簡易檢索 / 詳目顯示

研究生: 倪宛綺
Wan-Chi Ni
論文名稱: 寡聚物(雙馬來醯亞胺/2-硫代乙內醯脲)應用於鋰離子電池添加劑之研究探討
The investigation of oligomer (N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane and 2-thiohydantoin) as the additives in lithium-ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 許榮木
Jung-Mu Shu
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋰離子電池添加劑雙馬來亞醯胺2-硫代乙內醯脲
外文關鍵詞: lithium-ion battery, additive, N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane, 2-Thiohydantoin
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用差示掃描量熱法(DSC)以非恆溫模式探討BMI/THD的反應特徵溫度及放熱量,並利用自由模型法進行反應動力學及活化能分析,再添加HQ抑制劑探討不同莫耳比之BMI/THD的反應機制比例,並搭配電子順磁共振(EPR)進行反應機制分析,得知BMI/THD = 2/1的自由基加成反應比例較高於BMI/THD = 1/1,接著從熱重分析(TGA)探討所合成的添加劑熱穩定性,顯示含有較多的BMI熱穩定性越高。
    將BMI/THD作為正極添加劑應用於鋰離子半電池,透過循環伏安法(CV)、常/高溫充放電測試、電化學交流阻抗(EIS)可探討BMI/THD對於正極材料LiNi0.5Co0.2Mn0.3O2(NCM523)的影響,得知0.5 %添加量的樣品於各項性質方面皆優於1 %添加量的樣品,顯示不同添加劑含量所形成之添加劑層會對鋰離子電池有所影響。在高溫(55oC)充放電條件下,BMI/THD = 2/1_0.5%電性表現較好,表示添加劑的BMI含量越高可提升電池對高溫的耐受性。SEM影像顯示含有添加劑的樣品之表面形貌與Blank_NCM523不同,即證明添加劑會於充放電過程中形成。


    Non-isothermal polymerization kinetics of BMI/THD is investigated by differential scanning calorimetry (DSC) and the model-free (isoconversional) method is used to determine the activation energy of the system. HQ is added into different molar ratio of BMI/THD system and coordinate with electron paramagnetic resonance (EPR) to study the reaction mechanisms. After adding HQ, BMI/THD = 2/1 shows the higher ratio of free radical reaction than BMI/THD = 1/1. Thermal stability of each BMI/THD additive sample are evaluated by thermogravimetric analysis (TGA), it shows that the better thermal stability with much content of BMI.
    BMI/THD additives are incorporated into to lithium-ion battery which are investigateded by cyclic voltammetry (CV), room/high(55 ℃) temperature charge/discharge test and electrochemical impedance spectroscopy (EIS) to analyze the effect of the cathode material LiNi0.5Co0.2Mn0.3O2. The result shows that 0.5% additive has better electrochemical properties than 1 % additive. All properties are significantly affected by the additive layers formed by different additive contents on lithium ion batteries. Under high temperature (55oC) conditions, BMI/THD = 2/1_0.5% has electrochemical performance is better, indicating that the higher BMI content of the additive can improve the battery's resistance at high temperatures. Moreover, additive layer formation during charge/discharge can be proved by comparing the surface morphology of the sample with additive with the blank sample in scanning electron microscope (SEM) images.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章、緒論 1 1-1 前言 1 1-2 研究背景 2 1-2-1 鋰離子電池的工作原理 3 1-2-2 正極材料 4 1-2-3 負極材料 6 1-2-4 電解質 7 1-2-5 隔離膜 8 1-3 研究動機 9 第二章、文獻回顧 10 2-1 鋰離子電池安全性問題 10 2-1-1 負極析鋰(枝晶鋰) 10 2-1-2 正極材料釋氧及結構破壞(過充) 13 2-1-3 電解液分解和反應(產氣) 16 2-1-4 熱失控 20 2-1-5 安全問題的改善方案 22 2-2 提升鋰離子電池正極安全性之方法 24 2-2-1 正極添加劑 24 2-2-2 正極表面塗層 29 2-2-3 正極過渡金屬元素摻雜 33 2-2-4 核殼結構設計之正極材料 36 2-3 正極添加劑合成機制 41 2-3-1 自由基聚合反應 41 2-3-2 麥克加成反應 43 第三章、實驗方法 45 3-1 實驗藥品 45 3-2 分析儀器 46 3-3 實驗步驟 47 3-3-1 LIVING@合成比例設計 47 3-3-2 LIVING@製備 47 3-3-3 DSC樣品製備 48 3-3-4 DLS樣品製備 48 3-3-5 TGA樣品製備 48 3-3-6 ESR樣品製備 48 3-3-7 電極漿料及極片製備 49 3-3-8 CR2032鈕扣型半電池組裝 50 第四章、結果與討論 51 4-1 熱流型差示掃描量熱分析法 51 4-1-1非恆溫反應 51 4-1-2 非恆溫自由模型法分析 52 4-1-3 反應機制分析 54 4-2 動態光散射粒徑分析 56 4-3 電子自旋共振反應機制分析 57 4-4 熱重分析 58 4-5 循環伏安法 60 4-6 常溫充放電及循環壽命測試 65 4-6-1 常溫充放電測試(第1圈) 65 4-6-2 常溫充放電測試(第1 ~ 50圈) 66 4-6-3 常溫循環壽命測試 68 4-7 常溫電化學交流阻抗分析 70 4-7-1 Blank_NCM523常溫交流阻抗分析 70 4-7-2 BMI/THD常溫交流阻抗分析 72 4-8 倍率性能 74 4-9 高溫充放電及循環壽命測試 76 4-9-1 高溫充放電測試(第11 ~ 60圈) 76 4-9-2 高溫循環壽命測試 78 4-10 高溫電化學交流阻抗分析 79 4-11 場發射掃描式電子顯微鏡分析 81 第五章、結論 83 參考文獻 84

    [1] Ring, M. J., et al. "Causes of the global warming observed since the 19th century." Atmospheric and Climate Sciences 2.04 (2012): 401.
    [2] Goodenough, J. B. "Energy storage materials: a perspective." Energy Storage Materials 1 (2015): 158-161.
    [3] Ren, G., et al. "Review of electrical energy storage system for vehicular applications." Renewable and Sustainable Energy Reviews 41 (2015): 225-236.
    [4] Scrosati, B., et al. "Lithium-ion batteries. A look into the future." Energy & Environmental Science 4.9 (2011): 3287-3295.
    [5] Lu, L., et al. "A review on the key issues for lithium-ion battery management in electric vehicles." Journal of power sources 226 (2013): 272-288.
    [6] Manthiram, A. "An outlook on lithium ion battery technology." ACS central science 3.10 (2017): 1063-1069.
    [7] Jaguemont, J., et al. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures." Applied Energy 164 (2016): 99-114.
    [8] Pistoia, G., ed. Lithium-ion batteries: advances and applications. Newnes,
    2013.
    [9] Jasinski, R., et al. High energy batteries. Final report. No. AD-823304. Tyco Labs., Inc., Waltham, MA (USA), 1967.
    [10] Agarwal, R. R., et al. "Stagewise electrochemical intercalation of lithium in graphite by means of a molten salt cell." Proceedings of the Fall 1985 meeting of the Electrochemical Society. 1985.
    [11] Nishi, Y. "The development of lithium ion secondary batteries." The Chemical Record 1.5 (2001): 406-413.
    [12] Blomgren, G. E. "The development and future of lithium ion batteries." Journal of The Electrochemical Society 164.1 (2016): A5019.
    [13] Sekai, K., et al. "Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes." Journal of power sources 43.1-3 (1993): 241-244.
    [14] Moshtev, R. V., et al. "Material balance of petroleum coke/LiNiO2 lithium-ion cells." Journal of power sources 56.2 (1995): 137-144.
    [15] Appetecchi, G. B., et al. "A poly (vinylidene fluoride)-based gel electrolyte membrane for lithium batteries." Journal of Electroanalytical Chemistry 463.2 (1999): 248-252.
    [16] Tarascon, J. M., et al. "Performance of Bellcore's plastic rechargeable Li-ion batteries." Solid State Ionics 86 (1996): 49-54.
    [17] Scrosati, B., et al. "Lithium batteries: Status, prospects and future." Journal of power sources 195.9 (2010): 2419-2430.
    [18] Guyomard, D., et al. "Rocking‐chair or lithium‐ion rechargeable lithium batteries." Advanced Materials 6.5 (1994): 408-412.
    [19] Scrosati, B. "Recent advances in lithium ion battery materials." Electrochimica Acta 45.15-16 (2000): 2461-2466.
    [20] Kucinskis, G., et al. "Graphene in lithium ion battery cathode materials: A review." Journal of Power Sources 240 (2013): 66-79.
    [21] Fergus, J. W. "Recent developments in cathode materials for lithium ion batteries." Journal of power sources 195.4 (2010): 939-954.
    [22] Mizushima, K., et al. "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density." Materials Research Bulletin 15.6 (1980): 783-789.
    [23] Dokko, K., et al. "Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods." Journal of the Electrochemical Society 148.5 (2001): A422-A426.
    [24] Levasseur, S., et al. "On the dual effect of Mg doping in LiCoO2 and Li1+ δCoO2: structural, electronic properties, and 7Li MAS NMR studies." Chemistry of materials 14.8 (2002): 3584-3590.
    [25] Marzec, J., et al. "Conduction mechanism in operating a LiMn2O4 cathode." Solid State Ionics 146.3-4 (2002): 225-237.
    [26] Cao, F., et al. "A comparative electrochemical study of LiMn2O4 spinel thin-film and porous laminate." Electrochimica Acta 47.10 (2002): 1607-1613.
    [27] Belov, D., et al. "Investigation of the kinetic mechanism in overcharge process for Li-ion battery." Solid State Ionics 179.27-32 (2008): 1816-1821.
    [28] Yamada, A., et al. "Optimized LiFePO4 for Lithium Battery Cathodes." Journal of The Electrochemical Society 148.3 (2001): A224.
    [29] Amriou, T., et al. "Ab initio investigation of the Jahn–Teller distortion effect on the stabilizing lithium intercalated compounds." Materials chemistry and physics 92.2-3 (2005): 499-504.
    [30] Rougier, A., et al. "Optimization of the Composition of the Li1− zNi1+ zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies." Journal of The Electrochemical Society 143.4 (1996): 1168-1175.
    [31] Liu, H., et al. "Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2." Journal of Power Sources 173.1 (2007): 556-561.
    [32] Du Pasquier, A., et al. "Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life." Journal of Power Sources 186.2 (2009): 508-514.
    [33] Belharouak, I., et al. "On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system." Journal of the Electrochemical Society 154.12 (2007): A1083-A1087.
    [34] Takami, N., et al. "Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode." Journal of the electrochemical society 156.2 (2009): A128-A132.
    [35] Yunjian, Liu, et al. "Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature." Journal of Power Sources 189.1 (2009): 721-725.
    [36] Belharouak, I., et al. "Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li (Ni1/3Co1/3Mn1/3)O2." Electrochemistry Communications 8.2 (2006): 329-335.
    [37] Lee, B. R., et al. "High-voltage performance of Li[Ni0.55Co0.15Mn0.30]O2 positive electrode material for rechargeable Li-ion batteries." Journal of the Electrochemical Society 158.2 (2011).
    [38] Albrecht, S., et al. "Electrochemical and thermal behavior of aluminum-and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1− x(Ni1− y− zCoyMz)O2 (M= Al, Mg)." Journal of power sources 119 (2003): 178-183.
    [39] Majumder, S. B., et al. "Synthesis and electrochemical properties of LiNi0. 80 (Co0. 20− xAlx) O2 (x= 0.0 and 0.05) cathodes for Li ion rechargeable batteries." Journal of power sources 154.1 (2006): 262-267.
    [40] Brandt, K. "Historical development of secondary lithium batteries." Solid State Ionics 69.3-4 (1994): 173-183.
    [41] Yoshino, A. "Development of the lithium-ion battery and recent technological trends." Lithium-ion batteries. Elsevier, 2014. 1-20.
    [42] De las Casas, C., et al. "A review of application of carbon nanotubes for lithium ion battery anode material." Journal of Power Sources 208 (2012): 74-85.
    [43] Munshi, M. Zafar A., ed. Handbook of solid state batteries and capacitors. World Scientific, 1995.
    [44] Obrovac, M. N., et al. "Structural changes in silicon anodes during lithium insertion/extraction." Electrochemical and Solid State Letters 7.5 (2004): A93.
    [45] Zhang, S. S. "A review on electrolyte additives for lithium-ion batteries." Journal of Power Sources 162.2 (2006): 1379-1394.
    [46] Okamoto, Y. "Ab initio calculations of thermal decomposition mechanism of LiPF6-based electrolytes for lithium-ion batteries." Journal of The Electrochemical Society 160.2 (2013): A404-A409.
    [47] Kaymaksiz, S., et al. "Electrochemical stability of lithium salicylato-borates as electrolyte additives in Li-ion batteries." Journal of power sources 239 (2013): 659-669.
    [48] Huang, J., et al. "Density functional theory studies on the B-containing lithium salts." Ionics 16.6 (2010): 509-513.
    [49] Lu, Z., et al. "Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis." Journal of power sources 156.2 (2006): 555-559.
    [50] Wang, A., et al. "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries." npj Computational Materials 4.1 (2018): 1-26.
    [51] Arora, P., et al. "Battery separators." Chemical reviews 104.10 (2004): 4419-4462.
    [52] Zhang, J., et al. "Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator." ACS applied materials & interfaces 5.1 (2013): 128-134.
    [53] Venugopal, G., et al. "Characterization of microporous separators for lithium-ion batteries." Journal of power sources 77.1 (1999): 34-41.
    [54] Orsini, F., et al. "In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries." Journal of power sources 76.1 (1998): 19-29.
    [55] Kim, S. W., et al. "The surface morphology of Li metal electrode." Metals and Materials 6.4 (2000): 345-349.
    [56] Brissot, C., et al. "Dendritic growth mechanisms in lithium/polymer cells." Journal of power sources 81 (1999): 925-929.
    [57] Rosso, M., et al. "Dendrite short-circuit and fuse effect on Li/polymer/Li cells." Electrochimica Acta 51.25 (2006): 5334-5340.
    [58] Zhang, L., et al. "Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection." Energy & Environmental Science 5.8 (2012): 8204-8207.
    [59] Kang, K., et al. "Electrodes with high power and high capacity for rechargeable lithium batteries." Science 311.5763 (2006): 977-980.
    [60] Reimers, J. N., et al. "Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2." Journal of The Electrochemical Society 139.8 (1992): 2091-2097.
    [61] Wu, M. S., et al. "Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements." Journal of The Electrochemical Society 152.1 (2005): A47-A52.
    [62] Ohsaki, T., et al. "Overcharge reaction of lithium-ion batteries." Journal of Power Sources 146.1-2 (2005): 97-100.
    [63] Amatucci, G. G., et al. "CoO2, the end member of the LixCoO2 solid solution." Journal of The Electrochemical Society 143.3 (1996): 1114.
    [64] Kumai, K., et al. "Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell." Journal of power sources 81 (1999): 715-719.
    [65] Abraham, D. P., et al. "Diagnostic examination of thermally abused high-power lithium-ion cells." Journal of power sources 161.1 (2006): 648-657.
    [66] Kong, W., et al. "Gas evolution behaviors for several cathode materials in lithium-ion batteries." Journal of power sources 142.1-2 (2005): 285-291.
    [67] Campion, C. L., et al. "Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries." Journal of The Electrochemical Society 152.12 (2005): A2327-A2334.
    [68] Cha, C., et al. "Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni–Cd and Ni–MH cells." Journal of power sources 129.2 (2004): 347-357.
    [69] Gnanaraj, J. S., et al. "A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC." Journal of The Electrochemical Society 150.11 (2003): A1533-A1537.
    [70] Yang, C. R., et al. "Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte." Journal of power sources 72.1 (1998): 66-70.
    [71] Shin, J. S., et al. "Effect of Li2CO3 additive on gas generation in lithium-ion batteries." Journal of power sources 109.1 (2002): 47-52.
    [72] Onuki, M., et al. "Identification of the source of evolved gas in Li-ion batteries using# 2# 1-labeled solvents." Journal of The Electrochemical Society 155.11 (2008): A794-A797.
    [73] Wang, Q., et al. "Thermal runaway caused fire and explosion of lithium ion battery." Journal of power sources 208 (2012): 210-224.
    [74] Doughty, D. H., et al. "A general discussion of Li ion battery safety." The Electrochemical Society Interface 21.2 (2012): 37-44.
    [75] Wang, Q., et al. "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect." Nano Energy 55 (2019): 93-114.
    [76] Park, K. S., et al. "LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety." Chemistry of Materials 24.14 (2012): 2673-2683.
    [77] Jeong, G., et al. "Core–shell structured silicon nanoparticles@ TiO2–x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode." ACS nano 8.3 (2014): 2977-2985.
    [78] Wu, H., et al. "Improving battery safety by early detection of internal shorting with a bifunctional separator." Nature communications 5.1 (2014): 1-6.
    [79] Liu, H. M., et al. "Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries." RSC Advances 4.99 (2014): 56147-56155.
    [80] Wang, F. M., et al. "Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery." Journal of Membrane Science 368.1-2 (2011): 165-170.
    [81] Abraham, D. P., et al. "Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells." Electrochemistry communications 4.8 (2002): 620-625.
    [82] Dahn, J. R., et al. "Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells." Solid State Ionics 69.3-4 (1994): 265-270.
    [83] Woo, S. U., et al. "Significant improvement of electrochemical performance of AlF3-coated Li [Ni0.8Co0.1Mn0.1]O2 cathode materials." Journal of The Electrochemical Society 154.11 (2007): A1005-A1009.
    [84] Eilers-Rethwisch, M., et al. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials, Journal of Power Sources, 2018 387 101-107.
    [85] Kim, U. H., et al. "Compositionally Graded Cathode Material with Long‐Term Cycling Stability for Electric Vehicles Application." Advanced Energy Materials 6.22 (2016): 1601417.
    [86] Kim, U. H., et al. "Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles." Advanced Energy Materials 9.15 (2019): 1803902.
    [87] Su, H. L., et al. "Kinetic and structural studies of the polymerization of N, N′‐bismaleimide‐4, 4′‐diphenylmethane with barbituric acid." Polymer Engineering & Science 51.6 (2011): 1188-1197.
    [88] Gnanou, Y., et al. Organic and physical chemistry of polymers. John Wiley & Sons, 2008.
    [89] Mather, B. D., et al. "Michael addition reactions in macromolecular design for emerging technologies." Progress in Polymer Science 31.5 (2006): 487-531.

    無法下載圖示 全文公開日期 2025/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE