簡易檢索 / 詳目顯示

研究生: 范崇毅
Chong-Yi Fan
論文名稱: 三相小薄膜直流鏈電容變頻器達成永磁 同步電動機驅動系統的研製
Design and Implementation of Three-Phase Small-Film DC-Link-Capacitor Based Inverter PMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 林法正
Faa-Jeng Lin
楊勝明
Sheng-ming Yang
楊士進
Shih-Chin Yang
黃仲欽
Jonq-Chin Hwang
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 136
中文關鍵詞: 小薄膜電容阻尼補償預測型控制永磁同步電動機
外文關鍵詞: small-film capacitor, damping compensation, predictive control, permanent magnet synchronous motor
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討三相小薄膜直流鏈電容變頻器驅動內藏式永磁同步電
動機系統的研製。 由於 小薄膜 直流鏈 電容 的電壓變動量很劇烈 ,造成
輸入側電流有嚴重的高頻 諧波 。故本文探討 阻尼補償控制,並使用極
點安置法改善輸入側電流波形。
為了改善 閉迴路 驅動系統的動態響應,本文探討預測型速度控制
器與預測型電流控制器, 並將限制條件引入預測型控制器中, 以 提升
電動機驅動系統的 動態 性能 包括 良好的 步階暫態響應、 加載能力及
追蹤響應。
本文使用德州儀器公司所生產的數位訊號處器 TMS320F28035作為 驅動及 控制 的 核心 ,配合相關硬體達成驅控 。 實驗結果 驗證本文
所 提 方法的正確性及可行性。


The thesis proposes design and implementation of a three-phase small film dc-link capacitor based inverter driving a permanent magnet synchronous motor. Due to the fluctuations of the voltage of the small-film capacitor, an obvious high-frequency input harmonic currents occur. To solve this problem, a damping compensation control method based on a pole assignment technique is investigated to eliminate the input current harmonics and then improve the input current waveforms.
To improve the dynamic responses of the drive system, a predictive speed controller and a predictive current controller are investigated. In addition, the Lagrange algorithm is used in the PMSM drive system with constraints. By using the proposed control methods, the dynamic responses of the PMSM drive system, including good step-input responses, good load disturbance responses, and good tracking responses, are obtained.
A digital signal processor, TMS320F28035, manufactured by Texas Instrumenrts, is used as control center to control hardware. Experimental results validate the theoretical analysis, and show the feasibility and correctness of the proposed methods.

中文摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 背景 1 1.2 文獻回顧 3 1.3 研究動機 6 1.4 論文大綱 7 第二章 內藏式永磁同步電動機 8 2.1 簡介 8 2-2 結構與特性 8 2.3 數學模型 12 第三章小薄膜電容變頻器驅動系統 20 3.1 簡介簡介 20 3.2 變頻器變頻器 21 3.3 脈波寬度調變脈波寬度調變 22 3.4 閉迴路驅動系統閉迴路驅動系統 27 第四章 小薄膜電容驅動系統的主動阻尼補償控制方法 29 4.1 簡介 29 4.2 基本原理 31 4.3 阻尼補償控制 32 第五章 預測型控制器設計 41 5.1 簡介 41 5.2 基本原理 41 5.3 預測型速度控制器 43 5.4 測型電流控制器 56 第六章 系統研製 66 6.1 簡介 66 6.2 硬體電路 67 6.2.1 三相全波整流器 67 6.2.2 變頻器 68 6.2.3 電流偵測電路 69 6.2.4 編碼器電路 70 6.2.5 閘極驅動電路 71 6.2.6 電源供應電路 72 6.2.7 電壓偵測電路 73 6.2.8 過電流保護電路 74 6.2.9 過電壓保護電路 75 6.2.10數位訊號處理器 76 6.3 軟體程式 78 6.3.1 主程式 78 6.3.2 中斷副程式 80 第七章 實測結果 82 7.1 簡介 82 7.2 實測結果 84 第八章結論與未來研究方向 110 參考文獻111

[1]S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, June 2009.
[2]S. Williamson, A. Emadi, and K. Rajashekara, “Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1561-1572, July 2007.
[3]J. Wang, D. Howe, and Z. Lin, “Design optimization of short-stroke single-phase tubular permanent-magnet motor for refrigeration applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 327-334, Jan. 2010.
[4]R. D. Hall and W. J. Konstanty, “Commutation of DC motors,” IEEE Industry Applications Magazine, vol. 16, no. 6, pp. 56-62, Nov./Dec. 2010.
[5]J. J. Guedes, M. F. Castoldi and A. Goedtel, “Temperature influence analysis on parameter estimation of induction motors using differential evolution,” IEEE Latin America Transactions, vol. 14, no. 9, pp. 4097-4105, Sep. 2016.
[6]M. N. Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined star-delta windings to improve synchronous reluctance motor performance,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1479-1487, Dec. 2016.
[7] S. O. Kwon, J. J. Lee, B. H. Lee, J. H. Kim, K. H. Ha, and J. P. Hong, “Loss distribution of three-phase induction motor and BLDC motor according to core materials and operating,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4740-4743, Oct. 2009.
[8]H. Liu, I. Kim, Y. J. Oh, J. Lee, and S. Go, “Design of permanent magnet-assisted synchronous reluctance motor for maximized back-EMF and torque ripple reduction,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017.
[9]H. Ying, S. Huang, and D. Xu, “An high-speed low-noise rotor topology for EV/HEV PMSM,” CES Transactions on Electrical Machines and Systems, vol. 1, no. 4, pp. 354-359, Dec. 2017.
[10]B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, 2002.
[11]R. Krishnan, Electric Motor Drives – Modeling, Analysis, and Control, Prentice Hall International, 2001.
[12] P. C. Sen, Principles of Electric and Power Electronics, John Wiley and Sons, 2014.
[13]K. Kurihara and M. A. Rahman, “High-efficiency line-start interior permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789-796, May/June 2004.
[14]B. Stumberger, “Design and finite-element analysis of interior permanent magnet synchronous motor with flux barriers,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4389-4392, Nov 2008.
[15]K. Kim, J. Lee, H. J. Kim, and D. Koo, “Multiobjective optimal design for interior permanent magnet synchronous motor,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1780-1783, Mar. 2009.
[16]D. F. Chen, T. H. Liu, and S. H. Chen, “Implementation of a novel sensorless matrix converter PMSM drive,” IEEE ICPTES-2001, pp.718-724 , Oct. 2001.
[17]P. Sun, J. Lai, C. Liu, and W. Yu, “A 55-kW three-phase inverter based on hybrid-switch soft-switching modules for high-temperature hybrid electric vehicle drive application,” IEEE Transactions on Industry Applications, vol. 48, no. 3, pp. 962-969, May/June 2012.
[18]M. S. Zaky and M. K. Metwaly, “A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI Controllers,” IEEE Transactions on Power Electronics, vol. 32,no. 5, pp. 3741-3753, May 2017.
[19]S. Chi, Z. Zhang, and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 582-590, Mar./Apr. 2009.
[20]S. Kim, J. Lee, and K. Lee, “Self-tuning adaptive speed controller for permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1493-1506, Feb. 2017.
[21]Y. Chen, T. H. Liu, C. F. Hsiao, and C. K. Lin, “Implementation of adaptive inverse controller for an interior permanent magnet synchronous motor adjustable speed drive system based on predictive current control ,“ IET Electric Power Applications, vol. 9, no. 1, pp. 60-70, July 2015.
[22]M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
[23]F. Mendoza, V. M. Hernandez and J. Rodriguez, “Robust speed control of permanent magnet synchronous motors using two-degrees-of-freedom control,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6099-6108, Aug. 2018.
[24]W. C. Wang, T. H. Liu, and Y. Syaifudin,”Model predictive controller for a micro-PMSM-based five-finger control system,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3666-3676, June 2016.
[25]C. K. Lin, T. H. Liu, J. Yu, L. C. Fu, and C. F. Hsiao, “Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-681, Feb. 2014.
[26]D. Bao, X. Pan, Y. Wang, H. Huang, and B. Wu, “Integrated-power-control-strategy-based electrolytic capacitor-less back-to-back converter for variable frequency speed control system,” IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10065-10074, Dec. 2020.
[27]M. Hinkkanen and J. Luomi, “Induction motor drives equipped with diode rectifier and small DC-link capacitance,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 312-320, Jan. 2008.
[28]L. Mathe, L. Torok, D. Wang and D. Sera, “Resonance reduction for AC drives with small capacitance in the DC Link,” IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3814-3820, July/Aug. 2017.
[29]J. Jung, S. Lim, and K. Nam, “A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1124-1131, Sept./Oct. 1999.
[30]D. Wang, K. Lu, P. O. Rasmussen, L. Mathe, Y. Feng, and F. Blaabjerg, “Voltage modulation using virtual positive impedance concept for active damping of small DC-link drive system,” IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10611-10621, Dec. 2018.
[31] R. Maheshwari, S. Munk, and K. Lu, “An active damping technique for small DC-Link capacitor based drive system,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 848-858, May 2013.
[32] B. Singh, S. Gairola, B. N. Singh, A. Chandra, and K. Al, “Multipulse AC–DC converters for improving power quality: a review,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 260-281, Jan. 2008.
[33] P. Davari, F. Zare, and F. Blaabjerg, “Pulse pattern-modulated strategy for harmonic current components reduction in three-phase AC–DC converters,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3182-3192, July/Aug. 2016.
[34]W. Lee and S. Sul, “DC-link voltage stabilization for reduced DC-link capacitor inverter,” IEEE Transactions on Industry Applications, vol. 50,no.1, pp. 404-414, Jan./Feb. 2014.
[35]J. Rodriquez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, Wiley and Sons, West Sussex, UK, 2012.
[36]L. Wang, S. Chai, D. Yoo, L. Gan, and K. Ng, PID and Predictive Control of Electrical Drives and Power Converters Using MATLAB/Simulink, Wiley & Sons, Singapore, 2015.
[37]Y. Yang, W. Lu, and K. Zhou, “Roubust repetive control scheme for three phase constant-voltage-constant-frequency pulse-width-moudulated inverters,” IET Power Electronics, vol. 5, no. 6, pp.669-677, July 2012.
[38]L. P. Wang, Model Predictive Control System Design and Implementation Using Matlab, Springer, London, 2009.
[39]G.Wang, Reduced DC-link Capacitance AC Motor Drives, Springer, Singapore, 2020.
[40] Y. Shi, R. Li, Y. Xue and H. Li, "High-Frequency-Link-Based Grid-Tied PV System With Small DC-Link Capacitor and Low-Frequency Ripple-Free Maximum Power Point Tracking," IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 328-339, Jan. 2016.

無法下載圖示 全文公開日期 2024/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE