簡易檢索 / 詳目顯示

研究生: 劉華棟
Hwa-Dong Liu
論文名稱: 新型太陽能最大功率點追蹤演算法的設計與實現
Design and Implementation of Novel Solar Maximum Power Point Tracking Algorithms
指導教授: 林長華
Chang-Hua Lin
口試委員: 王見銘
Chien-Ming Wang
陳偉倫
Woei-Luen Chen
邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
劉益華
Yi-Hua Liu
林長華
Chang-Hua Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 152
中文關鍵詞: 最大功率點追蹤局部低點全局最大功率點追蹤日照量部分遮蔭
外文關鍵詞: maximum power point tracking (MPPT), local minimum, global maximum power point tracking (GMPPT), irradiance level, partial shading
相關次數: 點閱:377下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了兩種新型的太陽能追蹤演算法,分別為太陽與地平線角度最大功率點追蹤演算法,與基於趨勢線轉換技術最大功率點追蹤演算法。首先,傳統的爬山法在低日照量(<150W/m2)下不易執行最大功率追蹤,且作動點會陷入局部低點無法脫離,引起功率損失,所提第一種演算法利用了太陽與地平線之間角度關係,可將最大功率追蹤範圍延伸到100W/m2,進一步與爬山法在日照量分別為1000 W/m2、800 W/m2、500 W/m2、250 W/m2與100 W/m2進行模擬與實測結果比較,證實了所提第一種演算法優於傳統的爬山法。
    再者,第二種演算法在均勻的日照環境與部分遮蔭環境,皆可完成全局最大功率點追蹤控制。所提系統以微控制器根據太陽能模組輸出的電流、功率與實際溫度趨勢線之斜率,計算出太陽能模組的全局最大功率點之電流,以準確執行全局最大功率點追蹤,並快速地判斷太陽能模組是否遭受部分遮蔭的影響,可立即執行部分遮蔭模式控制策略,再重新計算出太陽能模組的全局最大功率點電壓,以精準地追蹤全局最大功率點。
    所提演算法二與粒子群優化法,及傳統的爬山法、擾動觀察法分別使用MATLAB模擬日照量由1,000 W/m2下降至500 W/m2的動態響應。然後,分別在日照量1,000 W/m2的均勻日照環境,與日照量1,000 W/m2和500 W/m2部分遮蔭下進行實測。最後,所有的模擬與實驗結果驗證所提演算法之全局最大功率點追蹤效能與收斂時間,均優於粒子群優化法,以及傳統的爬山法、擾動觀察法。


    This research proposes two novel types of solar tracking algorithms, namely the maximum power point tracking (MPPT) algorithm for the angle between the sun and the horizon and the MPPT algorithm based on the trend line transformation technique. The traditional hill climbing (HC) algorithm is not easy to perform MPPT under low irradiance level (<150W/m2), and the actuating point will trap a local minimum without escape, resulting in power loss. The first proposed algorithm uses the angle between the sun and the horizon to extend the MPPT range to 100W/m2. The proposed algorithm and HC algorithm are compared with the simulated and measured results under 1000 W/m2, 800 W/m2, 500 W/m2, 250 W/m2, and 100 W/m2, respectively, which confirmed the performance of the first proposed algorithm is better than the traditional HC algorithm.
    Furthermore, the second proposed algorithm can complete the global maximum power point tracking (GMPPT) control under uniform irradiation and partial shading conditions (UIC and PSC, respectively). The microcontroller unit of the proposed system calculates the IGMPP of the photovoltaic (PV) module to accurately execute GMPPT on the basis of the PV module current (Ipv), power (Ppv) and temperature trend line slope (dIpv/dPpv), and can rapidly confirm whether the PV module suffers from shading according to the slope (dIpv/dPpv) and immediately executes the PSC mode control strategy to recalculate the VGMPP of the PV module, thereby accurately tracking the GMPP.
    The second proposed algorithm is compared with the particle swarm optimization (PSO) method, traditional HC, and perturbation and observation (P&Q) algorithms for MATLAB simulation and actual measurement. These four algorithms firstly use MATLAB to simulate the dynamic response of the solar irradiance level from 1000 W/m2 to 500 W/m2. Then the measured separately under UIC of 1000 W/m2, and measured under PSC of 500 W/m2 and 1000 W/m2, respectively. Finally, all the simulations and experimental results confirm that the proposed algorithm has better GMPPT performance and convergence time than the PSO, the traditional HC, and P&O techniques.

    摘要 I Abstract II 誌謝 IV 目錄 Ⅵ 圖目錄 XI 表目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.2.1 開路電壓法 3 1.2.2 短路電流法 4 1.2.3 爬山法 5 1.2.4 擾動觀察法 6 1.2.5 增量電導法 7 1.2.6 粒子群最佳化演算法 8 1.2.7 猴王演算法 9 1.2.8 人工蜂群演算法 9 1.2.9 花授粉演算法 10 1.3 論文架構 10 第二章 太陽能電池介紹 13 2.1 太陽能電池簡介 13 2.2 太陽能電池原理 14 2.2.1 太陽能電池光伏效應 14 2.2.2 單一太陽能電池等效電路說明 15 2.2.3 太陽能電池特性 16 2.2.4 太陽能電池填充因子 17 2.3 太陽能電池基本架構 18 2.3.1 太陽能電池結構說明 18 2.3.2 部分遮蔭時無旁路二極體 19 2.3.3 部分遮蔭時有旁路二極體 21 第三章 太陽能最大功率點追蹤算法之改善策略與比較 24 3.1最大功率點追蹤技術簡介 24 3.2傳統最大功率點追蹤技術 25 3.2.1 開路電壓法 25 3.2.2 短路電流法 27 3.2.3 爬山法 29 3.2.4 擾動觀察法 32 3.2.2 增量電導法 34 3.3仿生智能演算法 37 3.3.1 粒子群最佳化演算法 37 3.3.2 猴王演算法 39 3.3.3 人工蜂群演算法 41 3.3.4 花授粉演算法 42 3.4所提演算法一︰太陽與地平線角度最大功率點追蹤演算法 44 3.5所提演算法二︰基於趨勢線轉換技術之最大功率點追蹤演算法 53 3.5.1均勻日照環境下太陽能模組控制策略 60 3.5.2部分遮蔭環境下太陽能模組控制策略 61 3.6最大功率點追蹤技術分析比較 68 第四章 太陽能最大功率點追蹤之系統設計 71 4.1最大功率點追蹤系統硬體架構 71 4.1.1 升壓式轉換器電路介紹 72 4.1.2 升壓式轉換器之動作原理 72 4.1.3 升壓式轉換器電路元件設計 76 4.2最大功率點追蹤系統韌體架構 79 4.2.1 數位控制器簡介 79 4.2.2 太陽與地平線角度最大功率點追蹤演算法之數位控制說明 82 4.2.3 基於趨勢線轉換技術最大功率點追蹤演算法之數位控制說明 87 第五章 模擬與實驗結果 92 5.1本實驗環境與設備介紹 92 5.2模擬程序 94 5.2.1 固定日照量之模擬結果 94 5.2.2 日照量變化之模擬結果 97 5.3實測程序 103 5.3.1 均勻日照條件之實測結果 103 5.3.1.1 太陽與地平線角度最大功率點追蹤演算法實測結果 103 5.3.1.2 基於趨勢線轉換技術最大功率點追蹤演算法實測結果 110 5.3.2 部分遮蔭條件之實測結果 114 5.3.2.1部分遮蔭下日照量1000W/m2實測結果 114 5.3.2.2部分遮蔭下日照量500W/m2實測結果 117 5.4實驗結果分析與比較 121 5.4.1 太陽與地平線角度最大功率點追蹤演算法實驗結果分析與比較 121 5.4.2 基於趨勢線轉換技術最大功率點追蹤演算法實驗結果分析與比較 122 第六章 結論與未來展望 123 6.1結論 123 6.2未來展望 125 參考文獻 126

    [1] PV module data. Available: https://solarbusinesshub.com/2019/04/21/total-installed-solar-pv-capacity-exceeded-500-gw-globally-in-2018-iea-pvps-report-finds/
    [2] D. C. Jordan, B. Sekulic, B. Marion, and S. R. Kurtz, “Performance and Aging of a 20-Year-Old Silicon PV System,” IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 744-751, Feb. 2015.
    [3] W. Luo, Y. S. Khoo, P. Hacke, D. Jordan, L. Zhao, S. Ramakrishna, A. G. Aberle, and T. Reindl, “Analysis of the Long-Term Performance Degradation of Crystalline Silicon Photovoltaic Modules in Tropical Climates,” IEEE Journal of Photovoltaics, vol. 9, no. 1, pp. 266-271, Nov. 2019.
    [4] A. Blakers, “Development of the PERC Solar Cell,” IEEE Journal of Photovoltaics, vol. 9, no. 3, pp. 629-635, Feb. 2019.
    [5] 劉華棟,“以週期共享做最大功率點追踪的獨立型太陽能發電系統設計’’,中原大學電機工程系碩士學位論文,民國九十五年七月。
    [6] K. Ogura, T. Nishida, E. Hiraki, M. Nakaoka, and S. Nagai, “Time-sharing boost chopper cascaded dual mode single-phase sinewave inverter for solar photovoltaic power generation system,” 2004 IEEE 35th Annual Power Electronics Specialists Conference, vol. 6, pp. 4763-4767, Jun. 2004.
    [7] H. D. Liu, and S. D. Lu, “A high-performance MPPT algorithm combining advanced three-point weight comparison and temporary stopped running strategy for PV systems,’’ IEICE Electronics Express, vol. 16, pp. 20190461, Aug. 2019.
    [8] A. K. Singh, I. Hussain, and B. Singh, “Double-Stage Three-Phase Grid-Integrated Solar PV System With Fast Zero Attracting Normalized Least Mean Fourth Based Adaptive Control,’’ IEEE Trans. Industrial Electronics, vol. 65, no. 5, pp. 3921-3931, Oct. 2017.
    [9] N. Saxena, I. Hussain, B. Singh, and A. L. Vyas, “Implementation of a Grid-Integrated PV-Battery System for Residential and Electrical Vehicle Applications,’’ IEEE Trans. Industrial Electronics, vol. 65, no. 8, pp. 6592- 6601, Aug. 2018.
    [10] N. Mutoh, M. Ohno, and T. Inoue, “A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems,’’ IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1055-1065, Jun. 2006.
    [11] M. Adly and K. Strunz, “Irradiance-Adaptive PV Module Integrated Converter for High Efficiency and Power Quality in Standalone and DC Microgrid Applications,’’ IEEE Trans. Industrial Electronics, vol. 65, no. 1, pp. 436-446, Jan. 2018.
    [12] M. Farhat, O. Barambones, and L. Sbita, “Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller,” Renewable and Sustainable Energy Reviews, vol. 49, no. 15, pp. 907-920, Sep. 2015.
    [13] H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. A.-Haddad, and M. Chiaberge, “A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT,” IEEE Trans. Sustainable Energy, vol. 6, no. 4, pp. 1426-1434, Oct. 2015.
    [14] N. Karami, N. Moubayed, and R. Outbib, “General review and classification of different MPPT Techniques,” Renewable and Sustainable Energy Reviews, vol. 68, no. 1, pp.1-18, Feb. 2017.
    [15] A. M. Eltamaly and H. M. H. Farh, “Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC,” Solar Energy, vol. 177, no. 1, pp. 306-316, Jan. 2019.
    [16] N. Kumar, B. Singh, B. K. Panigrahi, “Integration of Solar PV With Low-Voltage Weak Grid System: Using Maximize-M Kalman Filter and Self-Tuned P&O Algorithm,” IEEE Trans. Industrial Electronics, vol. 66, no. 11, pp. 9013-9022, Nov. 2019.
    [17] C. Manickam, G. P. Raman, G. R. Raman, S. I. Ganesan, and N. Chilakapati, “Fireworks Enriched P&O Algorithm for GMPPT and Detection of Partial Shading in PV Systems,” IEEE Trans. Power Electronics, vol. 32, no. 6, pp. 4432-4443, Jun. 2017.
    [18] N. Kumar, B. Singh, B. K. Panigrahi, and L. Xu, “Leaky-Least-Logarithmic-Absolute-Difference-Based Control Algorithm and Learning-Based InC MPPT Technique for Grid-Integrated PV System,” IEEE Trans. Industrial Electronics, vol. 66, no. 11, pp. 9003-9012, Nov. 2019.
    [19] M. Sato, Y. Fukuyama, T. Iizaka, and T. Matsui, “Total Optimization of Energy Networks in a Smart City by Multi-Swarm Differential Evolutionary Particle Swarm Optimization,” IEEE Trans. Sustainable Energy, vol. 10, no. 4, pp. 2186-2200, Oct. 2019.
    [20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, Dec. 1995.
    [21] 張宇騏,“具線上粒子群演算法之最佳功率調度直流/直流轉換器”, 國立臺灣科技大學電機工程系碩士學位論文,民國一百零五年七月。
    [22] N. Kumar, I. Hussain, B. Singh, and B. K. Panigrahi, “Maximum Power Peak Detection of Partially Shaded PV Panel by Using Intelligent Monkey King Evolution Algorithm,” IEEE Trans. Industry Applications, vol. 53, no. 6, pp. 5734-5743, Nov. 2017.
    [23] Z. Meng and J. S. Pan, “Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization,” Knowledge-Based Systems, vol. 97, no. 1, pp. 144-157 Apr. 2016.
    [24] K. Sundareswaran, P. Sankar, P. S. R. Nayak, S. P. Simon, and S. Palani, “Enhanced Energy Output From a PV System Under Partial Shaded Conditions Through Artificial Bee Colony,” IEEE Trans. Sustainable Energy, vol. 6, no. 1, pp. 198-209, Jan. 2015.
    [25] D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, Aug. 2009.
    [26] J. P. Ram and N. Rajasekar, “A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking,” IEEE Trans. Power Electronics, vol. 32, no. 11, pp. 8486-8499, Nov. 2017.
    [27] X.-S. Yang, M. Karamanoglu, and X. He, “Multi-objective Flower Algorithm for Optimization,” Procedia Computer Science, vol. 18, pp. 861–868, Aug. 2013.
    [28] P. R. Wolfe, “The Solar Generation: Childhood and Adolescence of Terrestrial Photovoltaics,” IEEE Book, 2018.
    [29] 太陽能電池製造產生廢水,Available: https://proj.ftis.org.tw/eta/epaper/PDF/ti059-1.pdf
    [30] 太陽能電池報廢,Available: https://e-info.org.tw/node/215151
    [31] 太陽能電池材料世代,Available: https://sites.google.com/site/solarenergy10399282/10-1
    [31] P. K. Pathak and A. K. Yadav, “Design of battery charging circuit through intelligent MPPT using SPV system,” Solar Energy, vol. 178, no. 15, pp. 79-89, Jan. 2019.
    [32] A. Elmelegi, M. Aly, E. M. Ahmed, and A. G. Alharbi, “A simplified phase-shift PWM-based feedforward distributed MPPT method for grid-connected cascaded PV inverters,” Solar Energy, vol. 187, no. 15, pp. 1-12, Jul. 2019.
    [33] M. G. Simes, and F. A. Farret, “Modeling Power Electronics and Interfacing Energy Conversion Systems,” IEEE Book, 2017.
    [34] G. Petrone, C. A. R. Paja, and G. Spagnuolo, “Photovoltaic Sources Modeling,” IEEE Book, 2016.
    [35] 太陽能電池結構,Available: https://www.samlexsolar.com/learning-center/solar-cell-module-array.aspx
    [36] N. Pachaivannan, R. Subburam, U. Ramkumar, and P. Kasinathan, “Crowded plant height optimisation algorithm tuned maximum power point tracking for grid integrated solar power conditioning system,’’ IET Renewable Power Generation, vol. 13, no. 12, pp. 2137-2147, Aug. 2019.
    [37] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System,” IEEE Trans. Power Electronics, vol. 26, no. 4, pp. 1022-1030, Apr. 2011.
    [38] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Predictive & Adaptive MPPT Perturb and Observe Method,” IEEE Trans. Aerospace and Electronic Systems, vol. 43, no. 3, pp. 934-950, July 2007.
    [39] O. Khan and W. Xiao, “Integration of Start–Stop Mechanism to Improve Maximum Power Point Tracking Performance in Steady State,” IEEE Trans. Industrial Electronics, vol. 63, no. 10, pp. 6126-6135, Oct. 2016.
    [40] Y. Hong, S. N. Pham, T. Yoo, K. Chae, K.-H. Baek, and Y. S. Kim, “Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions,” IEEE Trans. Power Electronics, vol. 30, no. 8, pp. 4209-4218, Aug. 2015.
    [41] A. F. Mirza, Q. Ling, M. Y. Javed, and M. Mansoor, “Novel MPPT techniques for photovoltaic systems under uniform irradiance and Partial shading,” Solar Energy, vol. 184, no. 15, pp. 628-648, May 2019.
    [42] B. Yang, T. Yu, X. Zhang, H. Li, H. S Y. Sang, and L. Jiang, “Dynamic leader based collective intelligence for maximum power point tracking of PV systems affected by partial shading condition,” Energy Conversion and Management, vol. 179, no. 1, pp. 286-303, Jan. 2019.
    [43] Solar trajectory data. Available: https://teknologisurya.files.wordpress.com/2011/09/airmass.jpg
    [44] Central Weather Bureau data. Available: http://www.cwb.gov.tw/V7/ astronomy/sunrise.htm
    [45] Solar trajectory data. Available: http://www.itacanet.org/the-sun-as-a-source-of-energy/part-3-calculating-solar-angles
    [46] PV module data. Available: https://zh.scribd.com/document/37009862/Sanyo-Hip-205-200nkhb5
    [47] N. Chatrenour, H. Razmi, and H. D. Mojarrad, “Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system,” Energy Conversion Management, vol. 139, no. 1, pp. 97-109, May 2017.
    [48] S. Saravanan, N. R. Babu, “RBFN based MPPT algorithm for PV system with high step up converter,” Energy Conversion Management, vol. 122, no. 15, pp. 239-251, Aug. 2016.
    [49] M. Thomson and D.G. Infield, “Impact of widespread photovoltaics generation on distribution systems,” IET Renewable Power Generation, vol. 1, no. 1, pp. 33-40, Mar. 2007.
    [50] A. Hajizadeh and D. Olteanu, “Voltage Control of Hybrid Photovoltaic/ Battery Power System for Low Voltage DC Micro grid,” Aalborg University, Institute of Energy Technology, 2016.
    [51] D. C. Jordan, B. Sekulic, B. Marion, and Sarah R. Kurtz, “Performance and Aging of a 20-Year-Old Silicon PV System,” IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 744-751, May 2015.
    [52] W. Luo, Y. S. Khoo, P. Hacke, D. Jordan, L. Zhao, S. Ramakrishna, A. G. Aberle, and T. Reindl, “Analysis of the Long-Term Performance Degradation of Crystalline Silicon Photovoltaic Modules in Tropical Climates,” IEEE Journal of Photovoltaics, vol. 9, no. 1, pp. 266-271, Jan. 2019.
    [53] N. Kumar, I. Hussain, B. Singh, and B. K. Panigrahi, “MPPT in Dynamic Condition of Partially Shaded PV System by Using WODE Technique,” IEEE Trans. Sustainable Energy, vol. 8, no. 3, pp. 1204-1214, Jul. 2017.
    [54] Y. Wang, Y. Li, and X. Ruan, “High-Accuracy and Fast-Speed MPPT Methods for PV String Under Partially Shaded Conditions,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 235-246, Jan. 2016.
    [55] O. Khan, W. Xiao, and H. H. Zeineldin, “Gallium-Nitride-Based Submodule Integrated Converters for High-Efficiency Distributed Maximum Power Point Tracking PV Applications,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 966-975, Feb. 2016.
    [56] 江炫樟,電力電子學第三版,民國103年。
    [57] 張天錫,電力電子學第三版,民國93年。
    [58] 梁適安,高頻交換式電源供應器原理與設計第二版,民國94年。
    [59] 趙春堂,PIC單晶片學習秘笈,民國91年。
    [60] 施慶隆,PIC18FXX2 微控制器原理與實作使用組合語言與C語言,民國93年7月。
    [61] Power MOSFET data. Available: https://html.alldatasheet.com/html-pdf/1009469/ISC/SPW52N50C3/65/1/SPW52N50C3.html
    [62] DIODE data. Available: https://html.alldatasheet.com/html-pdf/91665/IXYS/DSEP8-12A/83/1/DSEP8-12A.html
    [63] PC817 data. Available: https://html.alldatasheet.com/html-pdf/43368/SHARP/PC817/124/1/PC817.html
    [64] LA-55P data. Available: https://html.alldatasheet.com/html-pdf/115009/LEM/LA55P/52/1/LA55P.html
    [65] TLP250 data. Available: https://html.alldatasheet.com/html-pdf/32418/TOSHIBA/TLP250/245/1/TLP250.html
    [66] K. M. Shirvan, S. Mirzakhanlari, M. Mamourian, and N. A.-Hamdeh, “Numerical investigation and sensitivity analysis of effective parameters to obtain potential maximum power output: A case study on Zanjan prototype solar chimney power plant,” Energy Conversion Management, vol. 136, no. 15, pp. 350-360, Mar. 2017.
    [67] L. Guo, Z. Meng, Y. Sun, and L. Wang, “Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm,” Energy Conversion Management, vol. 108, no. 15, pp. 520-528, Jan. 2016.
    [68] V. Sabatelli, D. Marano, G. Braccio, and V. K. Sharma, “Efficiency test of solar collectors: uncertainty in the estimation of regression parameters and sensitivity analysis,” Energy Conversion Management, vol. 43, no. 17, pp. 2287-2295, Nov. 2002.
    [69] D. Pilakkat and S. Kanthalakshmi, “An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions,” Solar Energy, vol. 178, no. 15, pp. 37-47, Jan. 2019.
    [70] H. Labar and M. S. Kelaiaia, “Real time partial shading detection and global maximum power point tracking applied to outdoor PV panel boost converter,” Energy Conversion Management, vol. 171, no. 1, pp. 1246-1254, Sept. 2018.

    QR CODE