簡易檢索 / 詳目顯示

研究生: 柯懿庭
Yi-ting Ke
論文名稱: 小型電動載具用之六相永磁式同步電動機設計及控制
Design and Control of Six-Phase Permanent-Magnet Synchronous Motors for Small Electric Vechicles
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
王順源
none
郭明哲
Ming-Tse Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 六相永磁式同步電動機
外文關鍵詞: Six-Phase Permanent-Magnet Synchronous Motors
相關次數: 點閱:455下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製小型電動載具用之六相永磁式同步電動機設計及控制。配合直驅式的輪內電動機選用外轉型36槽38極的結構,針對磁路分析做電動機的幾何結構及尺寸最佳化設計,可減少感應電動勢的諧波失真及提高運轉效率。本文以有限元素分析軟體(Ansoft Maxwell_2D)之分析結果,作為實作之依據,其實測與分析結果相符合。在額定轉速為250 rpm、額定功率為500 W下,感應電動勢相電壓峰值為41.3 V,總諧波失真率為2.09 %,每相之電阻值為0.797 Ω,交軸電感為4.9 mH,直軸電感為3.5 mH。
六相永磁式同步電動機之控制,首先依據兩組霍爾磁極偵測元件判斷出感應電動勢之磁極角位置狀態,再依各個狀態切換功率電晶體驅動電動機。六相控制策略可視為兩組三相系統獨立控制,電動機其中一組系統故障,可由另一組載獨立運轉,提升了小型電動載具之驅動系統可靠度。本文以微控制器為核心,完成實體製作,實測結果驗證控制策略。電動機實際轉速於250 rpm,負載為300 W,六相正常驅動下其相電流峰值為3.1 A;若電動機一組故障由另一組獨立運轉,相電流則為6.1 A,驗證了單組系統獨立運作之可行性。最後負載為500 W,六相正常驅動下其相電流響應峰值為5.6 A,完成本文500 W六相永磁式同步電動機驅動。


This paper focuses on developing the design and control of a six-phase permanent-magnet synchronous motor which can be applied to small electric vehicles. An optimal design of the geometric structure and size of the motor, which is a direct-drive in-wheel motor with an out-runner structure of thirty-six slots and thirty-eight poles, has been accomplished by analyzing the magnetic circuit. By doing so, not only harmonic distortion of the induced electromotive force can be reduced, but also the efficiency can be increased. The simulation is done with Ansoft Maxwell_2D and the experiment is conducted based on the simulation results obtained. Clearly, the experimental results match with the analysis. The rated rotational speed is 250rpm and the rated power is 500 W. The peak value of the induced electromotive force is 41.3 V and the total harmonic distortion is 2.09 %. The resistance of each phase is 0.797 Ω. The quadrature-axis inductance is 4.9 mH. The direct-axis inductance is 3.5 mH.
The control strategy of the six-phase permanent-magnet synchronous motor is as follows: The status of angular positions of the induced electromotive force is detected by two Hall effect sensors. IGBTs are switched on and off according to corresponding statuses to drive the motor. The six-phase control strategy can be considered as two three-phase systems controlled independently. If one of the systems fails, the other one will be able to operate independently. This control strategy increases the reliability of drive systems of small electric vehicles. A microprocessor is used as a primary device to help accomplish the performance of the motor. Moreover, the experimental results have validated the feasibility of this control strategy. The peak value of the phase current of the two three-phase motor is 3.1 A when the actual rotational speed of the motor is at 250 rpm, with the load of 500 W, and six-phase motor drive is operating normally. Assuming one of the two three-phase motor systems fails, the phase current of the normal system is 6.1 A. The results above have proved the feasibility of a single three- phase system which can be operated independently. In addition, with a load of 500 W, the phase currents of the two three-phase motor are both 5.6 A while the six-phase motor driver is operating normally. Therefore, the 500 W six-phase permanent-magnet synchronous motor presented in this thesis is completed and driven successfully.

目錄 中文摘要                                 英文摘要   誌 謝                                目 錄                                符號說明                                 圖表索引                                第一章、緒論                               1-1 研究動機及目的                    1-2 文獻之探討                      1-2-1 電動機的設計                     1-2-2 電動機的驅動                     1-3 系統架構及本文特色                  1-4 本文大綱                       第二章、六相永磁式同步電動機設計                     2-1 前言                         2-2 永磁式同步電動機材料簡介               2-2-1 永久磁鐵材料                     2-2-2 矽鋼片材料                      2-3 永磁式同步電動機相數、極數及槽數的選定接線      2-3-1 電動機之定子繞組結構                 2-3-2 相數、極數及槽數的選定                2-4 六相永磁式同步電動機的磁路及性能幾何最佳化設計    2-4-1 氣隙磁通密度                     2-4-2 磁鐵尺寸設計                    2-4-3 感應電動勢                      2-4-4 繞組導體容許電流                   2-4-5 輸出功率                       2-5 結語                         第三章、六相永磁式同步電動機分析與量測                  3-1 前言                         3-2 六相永磁式同步電動機分析               3-2-1 磁路分析                       3-2-2 感應電動勢分析                    3-2-3 頓轉轉矩分析                     3-3 六相永磁式同步電動機模式參數量測           3-3-1 感應電動勢量測                    3-3-2 磁通鏈量測                      3-3-3 每相定子繞阻電阻量測                 3-3-4 交直軸電感量測                    3-3-5 發電機模式效率量測                  3-4 結語                         第四章、電動載具用六相永磁式同步電動機六步方波操作控制策略        4-1 前言                         4-2 霍爾效應磁極偵測元件的安裝及校正           4-2-1 霍爾效應磁極偵測元件之極對安裝校正          4-3 六相永磁式同步電動機六步方波控制           4-3-1 六相永磁式同步電動機各區間判斷            4-3-2 六相永磁式同步電動機轉速閉迴路控制          4-4 結語                         第五章、硬體製作及實測                          5-1 前言                         5-2 硬體電路                       5-2-1 數位信號處理器與介面電路               5-2-2 數位邏輯電路                     5-2-3 回授介面電路                     5-2-4 閘極驅動介面電路                   5-3 控制軟體規劃                     5-3-1 六相變頻驅動器軟體規劃                5-4 系統實測結果                     5-4-1 負載為300 W 六相同時驅動時之穩態實測       5-4-2 負載為300 W 單組三相獨立驅動時之穩態實測      5-4-3 負載為500 W 六相同時驅動時之暫態及穩態實測 5-5 結語                         第六章、結論與建議                            6-1 結論                         6-2 建議                         參考文獻                                 作者簡介                                

[1]R. Wrobel and P. H. Mellor, “Design considerations of a direct drive brushless machine with concentrated windings,” IEEE Transactions on Energy Conversion, vol. 23, pp.1 - 8 , 2008.
[2]K. T Chau, C. C. Chan and C. Lin, “Overview of permanent -magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, pp.2246 - 2257, 2008.
[3]F. P. Lopes, P.S. Oliveira, L.P. and R.E. Araujo, “An electric wheelchair as a tool for motivating students in power electronics,” IEEE Electrical Drives on Power Electronics, pp. 481 - 485, 2008.
[4]Y. Wang, H. Zhang and S. Ding, “Computer-aided design and experiment research of new type permanent magnet synchronous motor,” Control Conference, 2008. CCC 2008. 27th Chinese, pp. 216 - 220, 2008.
[5]K. T. Chau, D. Zhang, J. Z. Jiang, Chunhua Lin and Y. Zhang, “Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles,” IEEE Transactions on Magnetics, vol. 43, pp.2504 - 2506, 2007.
[6]Y. Dai, L. Song and S. Chi, “Development of PMSM drives for hybrid electric car applications,” IEEE Transactions on Magnetics, vol. 43, pp. 434 - 437, 2007.
[7]邱國麟、張正敏、黃憲章、吳昱勳、丁家敏,「高效率馬達設計開發」,機械工業雜誌,第337期2011年3月。
[8]W. B. Tsai and T. Y. Chang , “Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets,” IEEE Transactions on Magnetics, vol. 35, pp. 543-547,1999.
[9]H. Kim and R. D. Lorenz, “Improved current regulators for IPM machine drives using on-line parameter estimation,” Proceedings of the 2003 Industry Applications Annual Meetings, pp.86-91, 2003.
[10]E. Spooner, ”Direct coupled, permanent magnet generators for wind turbine applications.” IEE Proceedings, Electric Power Application, vol. 143, pp. 1-8, 1996.
[11]U. Kim and D. K. Lieu, “Magnetic field calculation in permanent magnet motors with rotor eccentricity: Without Slotting Effect,” IEEE Transactions on Magnetics, vol. 34, pp.2243 - 2252, 1998.
[12]P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao and R. Liu, “Optimization of the Magnetic Pole Shape of a Permanent Magnet Synchronous Motor,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp.2531 - 2533, 2007.
[13]B. Štumberger, G. Štumbergera, M. Hadžiselimovića, A. Hamlera, V. Goričana, M. Jesenika and Mladen Trlepa, “Comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement,” Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp.e261 - e264, 2007.
[14]Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp.407 - 412, 2000.
[15]Z. Q. Zhu, S. Ruangsinchaiwanich, Y.Chen and D. Howe, “Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines,” IEEE Transactions on Magnetics, vol. 42, no. 5, pp.1597 - 1603, 2006.
[16]C. S. Koh, H. S. Yoon, K. W. Nam and H. S. Choi , “Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp.1822 - 1827, 1997.
[17]C. S. Koh and J.-S. Seol, “New cogging-torque reduction method for brushless permanent-magnet motors,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp.3503 - 3506, 2003.
[18]Z. Q. Zhu and D. Howe, “Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors” IEEE Transactions on Magnetics, vol. 28, no. 2, pp.1371 - 1374, 1992.
[19]S. A. Saied, K. Abbaszadeh, S. Hemmati and M. Fadaie, “A new approach to cogging torque reduction in surface-mounted permanent-magnet motors,” European Journal of Scientific Research, vol. 26, no. 4, pp.499-509, 2009.
[20]P. Lampola, and J. Perho, “Electromagnetic analysis of a low-speed permanent-magnet wind generator.” International Conference, Opportunities and Advances in International Electric Power Generation, Industry Applications Conference , pp.55-58,1996.
[21]T. F. Chan and Lie-Tong Yan, “Analysis and performance of a surface-mounted NdFeB permanent-magnet a.c. generator.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.11-14,1997.
[22]T. F. Chan and Lie-Tong Yan, “Analysis and performance of a three-phase a.c. generator with inset permanent-magnet rotor.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.436-440,2000.
[23]Y. Honda, T. Nakamura, T. Higaki and Y. Takeda, “Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles,” Thirty-Second IAS Annual Meeting Conference, vol. 1, pp.75-82, 1997.
[24]B. J. Chalmers, “Performance of interior-type permanent-magnet alternator,” IEE Proceedings Electric Power Applications, vol. 141, pp.186-190, 1994.
[25]Z. Zhu, D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit Field,” IEEE Transactions on Magnetics, vol.29, no. 1, pp. 124-135, 1993.
[26]Z. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. Armature-reaction field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 136-142, 1993.
[27]Z. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent Magnet DC motors. III. Effect of tator Slotting,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.143-151, 1993.
[28]Y. Yzou, “DSP-base dully digital control of a PWM DC-AC Converter for AC Voltage Regulation,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 139-144, 1995.
[29]V. Blasko, J. C. Moreira and T. A. Lipo, “A new field oriented controller utilizing spatial position measurement or rotor ring current,” IEEE power electronics specialists conference, pp.295-299, 1989.
[30]魏孝哲,“六臂型三相變流器之永磁式同步電動機驅動器之故障後控制策略”,國立台灣科技大學電機研究所碩士論文,2008年。
[31]蕭鈞毓,“六相及雙三相繞組永磁式同步電機之分析及設計”,國立台灣科技大學電機研究所碩士論文,2007年。
[32]魏靜微,”小功率永磁電機原理、設計與應用”,北京,機械工業出版社,西元2009年。
[33]范揚鋒,「電磁鋼片之簡介」,馬達數位學習網電子期刊,第30期,2003年6月。
[34]張六文、黃議興,「電磁鋼片的特性與應用」,馬達數位學習網電子期刊,第31期,2003年7月。
[35]http://www.csc.com.tw/splash.html中國鋼鐵矽鋼片。
[36]姚念宏,“無槽式永磁無刷直流電動機之設計及製作”,國立台灣科技大學電機研究所碩士論文,2010年。
[37]Pyrhonen, J. Jokinen, T. and Hrabovcova, V.,”Design of rotating electrical machines”, U.K., 2008.
[38]姚天祐,「直流無刷馬達的相、極和槽之組成」,機械工業雜誌,民國81年6月。
[39]D. Hanselman,”Brushless permanent Magnet motor design”The Writers’ Collective, U.S.A., 2003.
[40]J. R. Hendershort,”Design of brushless permanent-magnet Motor” ,Hillsboro, Ohio,1994.
[41]廖福益,小型馬達技術,全華書局,民國九十二年。
[42]劉建村,“六相永磁式同步電動機設計及故障後控制策略” 國立台灣科技大學電機研究所碩士論文,2010年。

無法下載圖示 全文公開日期 2017/01/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE