簡易檢索 / 詳目顯示

研究生: 甘麗婷
Li-Ting Kan
論文名稱: 應用生物相容支架材料誘導人體脂肪幹細胞形成組織工程軟骨
Application of Bio-composite Scaffold in Tissue Engineered Cartilage by Inducing Human Adipose Tissue-derived Stem Cells
指導教授: 洪伯達
Po-Da Hong
口試委員: 戴念梓
Nian-Tyzz Dai
高震宇
Jen -Yu Cako
劉念先
Nian-Sian Liou
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 幹細胞組織工程生物相容材料
外文關鍵詞: stem cells, Tissue Engineering, Bio-composite Scaffold
相關次數: 點閱:338下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用脂肪組織中取得具有分化能力的脂肪幹細胞(hASCs)結合生
    物相容材料支架來誘導人體脂肪幹細胞形成組織工程軟骨。本實驗中評估
    三種以明膠為主的細胞載體材料,應用在幹細胞分化成軟骨的可行性。本
    實驗的主要支架明膠(gelatin)是一種具有良好的生物相容性材料,另外選擇
    加入第ㄧ型膠原蛋白 (collagen I) 、第二型膠原蛋白(collagen II),並且加
    入聚己內酯(PCL),形成gelatin/collagen II:PCL(GCII), gelatin:PCL(GP),
    gelatin/collagen I:PCL(GCI) 能有效控制支架在細胞培養過程中,產生高度
    的降解,維持其穩定性。並探討幹細胞在不同支架的生長及分化的情形。
    在掃描式電子顯微鏡及螢光顯微鏡和細胞生長曲線鑑定下, 證明材料具
    有良好的生物相容性。在脂肪幹細胞的誘導分化能力測定,免疫螢光染色
    的結果顯示脂肪幹細胞在人工支架的微環境下,有被誘導走向軟骨細胞分
    化的情形,且細胞表現量隨著時間而增加。另外,利用Alcian blue stain 和
    DMMB assay 測定葡萄糖糖胺聚合糖分析,在GP 和GCII 有較多的表現
    量。藉由Sirius red stain 來分析誘導後的軟骨中膠原蛋白的種類,使用可
    見光/紫外光光譜儀測定其吸收值(波長:350nm; 540nm),結果顯示誘導後的
    軟骨所分泌的膠原蛋白以第ㄧ型膠原蛋白為主。並利用Von Kossa stain 來
    探討長時間後的軟骨基質鈣化(chondralcalcification)的情形,在誘導後第
    三十天,鈣化出現在軟骨細胞周圍區。


    This study investigated the induction of human adipose tissue-derived stem
    cells (hASCs) into chondrocytes, which made a possible source for cartilage
    tissue engineering in clinical therapy. The hASCs were cultured on three
    different biocompatible biomaterial groups including gelatin/collagen I: PCL
    (GCI), gelatin/collagen II:PCL (GCII) and gelatin:PCL (GP). Considering the
    high degradability of natural biomaterials, the addition of PCL for formulation
    of scaffolds is necessary to resist absorption in vitro. In addition, we
    characterized the attachment, growth and differentiation abilities of hASCs in
    biomaterials by SEM, fluorescence microscopy and cell growth curve in vitro.
    The immunofluorescence data showed that the hASCs were differentiated with
    the increasing time on biocomposite membrane groups. For investigation of
    cartilage differentiation, alcian blue staining and dimethylmethylene blue
    (DMMB) assay were used for both quality and quantity evaluation of
    glycosaminoglycans. The results showed that the groups of gelatin and GCII
    contained more glycosaminoglycans than GCI. For further distinguishing
    distinct collagen types produced by chondrocytes based on different
    biocomposite membranes, sirius red staining was used and type I collagen
    showed the absorbance at 540 nm and type II collagen at 350nm with
    UV-visble spectrophotometer. We demonstrated that the chondrocytes release
    mainly type I collagen on all biocomposite membranes. In detecting the long
    term expression of calcium accumulation in differentiated chondrocytes using
    von kossa stain, chondral calcification represented after induction of
    chondrocyte differentiation on biocomposite membranes for 30 days

    論文題要內容...........................Ⅰ 英文摘要.............................. Ⅱ 致謝.................................. Ⅲ 目錄.................................. Ⅳ 圖表目錄...............................Ⅶ 縮寫表................................ Ⅸ 第一章 前 言............................1 1 . 1 組織工程原理......................1 1 . 2 人工支架在組織工程上的應用........2 1 . 2 . 1 膠原蛋白......................3 1 . 2 . 2 明膠( g e l a t i n ..........3 1 . 2 . 3 聚己內酯( P C L )簡介.........4 1 . 2 . 4 支架的製造技術................4 1 . 3 生物相容性........................5 1 . 4 幹細胞............................5 1 . 4 . 1 幹細胞來源與分類..............5 1 . 4 . 2 脂肪幹細胞的特性..............6 1 . 4 . 3 幹細胞之誘導分化..............6 1 . 4 . 4 幹細胞在組織工程上的應用..... 7 1 . 5 軟骨組織......................... 7 1 . 5 . 1 軟骨的生理構造................8 1 . 5 . 2 軟骨的分類....................8 1 . 5 . 3 軟骨組織在組織工程上的應用....9 1 . 6 研究目的........................1 0 第二章 材料與實驗方法.................1 1 2 . 1 明膠混合膠原蛋白與聚己內酯生物性複合材料製備 方法................................. 1 1 2 . 2 人體脂肪幹細胞培養............. 1 1 2 . 3 脂肪幹細胞在生物相容材料上的培 養............................. 1 2 2 . 4 生物相容性..................... 1 2 2 . 4 . 1 掃描式電子顯微鏡............1 2 2 . 4 . 2 免疫螢光染色法..............1 3 2 . 5 脂肪幹細胞之軟骨細胞分化能力測試1 4 2 . 5 . 1 A l c i a n b l u e s t a i n1 4 2 . 5 . 2 DMMB a s s a y..............1 4 2 . 5 . 3 S i r i u s r e d s t a.....1 5 2 . 5 . 4 Vo n Ko s s a s t a i n.....1 5 第三章 結果與討論.....................1 6 3 . 1 生物相容性......................1 6 3 . 1 . 1 掃描式電子顯微鏡............1 6 3 . 1 . 2 免疫螢光染色................1 9 3 . 1 . 3 C e l l g r owt h c u r v e.2 2 3 . 2 脂肪幹細胞之軟骨細胞分化能力測定2 4 3 . 2 . 1 免疫螢光染色............... 2 4 3 . 2 . 2 葡萄糖糖胺聚合糖分析....... 2 9 3 . 2 . 3 膠原蛋白分析................3 1 3 . 2 . 4 軟骨基質鈣化分析............3 2 3 . 3 脂肪幹細胞之特性分析測定........3 3 第四章 討論 ..........................3 9 第五章 總結 ..........................4 2 參考文獻..............................4 3 附錄..................................4 8

    [1] Lanza, R.P., Langer, R., Vacanti, J., “Principles of Tissue Engineering”, 2nd
    ED, Academic Press, 2000.
    [2] M. Ueda. I. Tohnai. and H. Nakai. “Tissue engineering research in oral
    implant surgely.” Artificial Organs. 25(3):164-71. 2000
    [3] P. D. Benay, J. D. Shaffer, Dedifferentiated chondrocytes reexpress the
    differentiated collagen phenotype when cultured in agarose gels, Cell, 30,
    215-224, 1982
    [4] P. A. Zuk et al. “Tissue Engineering” 2001.
    [5] C.F. Chang, M.W. Lee, P.Y. Kuo, Y.J. Wang, Y.H. Tu, S.C. Hung,
    Threedimensional collagen fiber remodeling by mesenchymal stem cells
    requires the integrin–matrix interaction, J. Biomed. Mater. Res. A. 80 (2007)
    [6] Perrin, D. E. & English, J. P. Polycaprolactone. In: Domb, A. J., Kost, J. & Wiseman, D. M., editors. Handbook of Biodegradable Polymers. Australia:
    Harwood Academic; p. 63-77 (1998).
    [7] R.P., Langer, R., Vacanti, J., “Principles of Tissue Engineering”, 2nd , pp.671-682 Academic Press, Tokyo, samDiego, 1999.
    [8] Vacanti, C. A. & Vacanti, J. P. Bone and cartilage reconstruction. In: Lanza,R., Langer, R., Chick, W. (eds.) Principles of Tissue Engineering. New York:R.G. Landes Co., p. 619-31 (1997).
    [9] G. Chen. I. Ushida. and T. Tateishi. ‘Poly(D.L-latic-co-glycolic acid)
    sponge hybridized with collagen microsponges and deposited apatite
    particulates. J. Biomed. Mater. Res. 57. 8-14. 2001
    [10] Babensee, J. E., Anderson, J. M., Melntire, L. V. & Mikos, A. G. Host
    45response to tissue engineered devices. Adv Drug Deliv Rev. 33:111-39 (1998).
    [11]A. A. Ignatius. and L.E. Claes. "1n vitro biocompatibility of bioresorbable
    polymers: poly(L. DL-lactide) and poly(D .L-latide-co - glycolide).
    Biomaterials. 17. 831-39. 1996
    [12] Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL, Acta
    Biomaterials. 2006, 2 : 313-20.
    [13] Wang K, Healy KE, Elenz DR, Nam EK, Tasi DC, Thomas CH, Tissue
    Eng, 1999, 5 : 35-51.
    [14] 黃玲惠. 膠原蛋白生物技術. 化工技術第四卷第七期. 1996
    [15] T. Kimura, N. Yasai, S. Chsawa, Chondrocytes mebedded in cololagen
    gels maintain cartilage phenotype during long term cultures, Clim Orthop Rel
    Res, 1984, 186:231.
    [16] S. Nehrer, H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K.
    Louie, Matrix collagen type and pore size influence behaviour of seeded
    cannine chondrocytes, Biomaterials, 18, 769-776, 1997
    [17] J. S. Pieper, P. M. van der Kraan, T. Hafmans, Crosslinked type Ⅱ
    collagen, Biomaterials, 83, 3183-3192, 2002.
    [18] Ma J, Wang H, He B, Chen JT, Biomaterials, 2001, 22 : 2563-7.
    [19] Harley BA, Hastings AZ, Yannas IV, Sannino A., Biomaterials, 2006, 27,
    866-74.
    [20] Widmer, M. S. & Mikos, A. G. Fabrication of biodegradable polymer
    scaffolds for tissue engineering. In: Patrick, Jr. C. W., Mikos, A. G. & McIntire,L. V., editors. Frontiers in Tissue Engineering. New York: Elsevier Science; p.107-20 (1998).
    [21] Walker MR., Patel KK., Stappenbeck TS.: The stem cell niche. Pathology.
    217: 169–180, 2009.46
    [22] Kim WS., Park BS., Sung JH., Yang JM., Park SB., Kwak SJ., Park JS.:
    Wound healing effect of adipose-derived stem cells: acritical role of secretory
    factors on human dermal fibroblasts. Dermatol Sci. 48:15–24, 2007.
    [23] Chen, H. F., Kuo, H. C., Chien, C. L. , Shun, C. T., Yao, Y. L. , Ip, P. L. ,Chuang, C. Y., Wang, C. C., Yang, Y. S. & Ho, H. N. Derivation,
    characterization and differentiation of human embryonic stem cells: comparing
    serum-containing versus serum-free media and evidence of germ cell
    differentiation. Human Reproduction 22(2):567-77 (2007).
    [24] P.A. Zuk. M Zhu. H Mizuno. J. Huang. J.W. Futrell. A.J. Katz. P.
    Benhaim. H.P. Lorenz. and M.H. Hedrick. "Muhiti1ineage Cells from Human
    Adipose Tissue: Implications for cell-Based Therapies." Tissue Engineering. 7.
    211-28.2001
    [25] Rei Ogawa, Hiroshi Mizuno, Atsushi Watanabe, Makoto Migita,
    Takashi Shimada, and Hiko Hyakusoku” Osteogenic and chondrogenic
    differentiation by adipose-derived stem cells harvested from GFP transgenic
    mice”(2003)
    [26] Me’ lanie Vermette, Vale’ rie Trottier, Vincent Me’ nard, Lucie
    Saint-Pierre Alphonse Roy, Julie Fradette “ Production of a new
    tissue-engineered adipose substitute from human adipose-derived stromal
    cells” February 2007
    [27] Wobus, A. M., & Boheler, K. R. Embryonic stem cells: prospects for
    developmental biology and cell therapy. Physiology Review 85:635-78 (2005).
    [28] Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R.,
    Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R.
    Science 284, 143–147. (1999)
    [29] Jacobson, L. O., Marks, E. K., Robson, M. J., Gaston, E. O. & Zirkle, R. E.47Effect of spleen 59 protection on mortality following x-irradiation. J Lab ClinMed 34:1538–1543 (1949).
    [30] Pittenger, M. F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R.,
    Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R.
    Multilineage potential of adult human
    [31] F. Bany. R.E. Boynton. B. Liu. and J.M. Murphy. “ (‘Chondrogenic
    Differentiation of Mesenchymal Stem Cells from Bone Manow:
    Differentiation-Dependent Gene Expression of Matrix Components” Exp.
    Cell Res.. 268, 189—200. 2001
    [32] Im, G. I., Shin, Y. W. & Lee, K. B. Do adipose tissue-derived
    mesenchymal stem cells have the same osteogenic and chondrogenic
    potential as bone marrow-derived cells. Osteoarthritis Cartilage 13:845-53
    (2005).
    [33] Chunmeng, S. & Tianmin, C. Effects of plastic-adherent dermal
    multipotent cells on peripheral blood leukocytes and CFU-GM in rats.
    Transplant Proc. 36:1578-1581 (2004).
    [34] Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and
    cell-based tissue engineering. Arthritis Res Ther 2003;5:32–45.
    [35] Aigner T, Stove J. Collagens—major component of the physiological
    cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 2003;55:1569–93.
    [36] J. S. Johnna, A. G. Mikos, Review: tissue engineering for regeneration of
    articular cartilage, Biomaterials, 21, 431-440, 2000.
    [37] T. blunk. A. L. Sieminski. K J. Gooch. D. L. Courter. A. P. Hollander. A.
    M Nahir. R Langer. G. V. Novakovic. and L E. Freed. “Differential effects of
    growth factors on tissue-engineered cartilage.” Tissue Engineering. 8(l):73-84.48 2002
    [38] 洪瑩真,製備聚己內酯/明膠支架並探討其性質及皮膚組織工程上的應
    用,國立台灣科技大學高分子工程研究所(2008)
    [39] Beatrice Jegalian & Eddy M. De Robertis , Alcian Blue Cartilage Staining
    (Cell 71, 901-910, 1992)
    [40] K. von der Mark, V. Gauss, H. von der Mark, P. Muller, Relationship
    between cell shap and type of collagen synthesized as chondrocyte lose their
    cartilage phenotype in culture, Nature, 267, 531-532, 1977

    無法下載圖示 全文公開日期 2015/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2015/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE