簡易檢索 / 詳目顯示

研究生: 黃奕翔
Yi-hsiang Huang
論文名稱: 短波長光源與非接觸浸潤式之無光罩微影系統研發暨其應用
Development and application of non-contact immersion maskless lithography system using short wavelength light source
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭逸琳
Yih-Lin Cheng
張復瑜
Fuh-Yu Chang
趙偉忠
none
洪基彬
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 160
中文關鍵詞: 無光罩微影系統非接觸浸潤式
外文關鍵詞: maskless lithography system, non-contact immersion
相關次數: 點閱:392下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光學加工已經是目前科技中相當重要的一環,其中光微影製程為最重要的積體電路或微機電元件生產技術,由於元件開發往「輕、薄、短、小、低成本」的趨勢進行製程的開發;在微影製程中,傳統的方式已經無法再將尺寸縮小,此時開發出浸潤式微影法來解決尺寸問題,但此方式也衍生出許多的問題,如水份滲入光阻產生光阻的特性改變、水滴殘留造成光阻的顯影失敗、需在塗佈光阻保護層等問題。
本研究為解決上述之問題,本實驗室自行研發兩種不同曝光光源(分別為藍光波長435nm及紫外光波長365nm)的動態光罩微影系統,利用軟體控制光罩進行曝光,可成功的曝光出微電極及微機電元件圖案並利用灰階曝光製作出不同斜率的菲涅爾透鏡。其因為提升解析度,提出乾式非接觸浸潤式微影並可解決傳統浸潤式微影的問題,乃利用高分子透明薄膜置於水與光阻中間,讓濕製程轉為乾製程成功的解決傳統浸潤濕的問題。並利用不同的薄膜與不同的曝光介質進行曝光,將解析度最高提升到原先的6.6μm降到850nm,並成功的在非接觸浸潤式加上灰階曝光製作出直徑縮小約57%的菲涅爾透鏡,證明此方式可應用建構平面與立體的結構。


The optical lithography process which was one of the most important optical processes was developed to produce the integrated circuit and micro electromechanical system components. The traditional optical lithography process could not produce small size components. Therefore, a new optical lithography process, immersion lithography method, was developed. Some process issues from traditional immersion lithography process such as characteristics of photoresist changed by penetrating DI water into photoresist, development failed by water droplet on photoresist, coating protection layer on photoresist, etc. In order to solve the above mentioned issues, the dynamic mask lithography system exposure by two different light sources was developed in this study. The mask exposure was designed by the drawing software. The dynamic mask lithography system exposure system could expose the microelectrodes and micro-electromechanical patterns and the Fresnel lens with different slopes. The dry non-contact immersion lithography used a polymer transparent film to separate water and photoresist. Applying dry non-contact immersion lithography increased the exposure resolution and solved the process issues from the traditional immersion lithography process. The resolution was improved from 6.6 um to 850 nm using different polymer transparent films and exposure mediums. The dry non-contact immersion lithography combined with gray-scale exposure reduced about 57% the diameter of Fresnel lens. Those results demonstrated that the dry non-contact immersion lithography could apply to construct the 2-D and 3-D structures.

中文摘要...................................................................................Ⅰ Abstract………………………………………………………Ⅱ 致謝………………………………………………………...…Ⅲ 目錄...........................................................................................Ⅴ 圖目錄.......................................................................................Ⅹ 表目錄....................................................................................XIX 第一章 緒論………………………………………………...….1 1.1前言..................................................................................................1 1.2研究背景及目的………………………………………….……….3 1.3論文架構…………………………………………………………..6 第二章 文獻探討……………………….....……………….......8 2.1 動態光罩微影技術………………………………………….........8 2.1.1 數位微反射鏡元件原理..............................................................9 2.1.2 無光罩使用在微影曝光的演進................................................11 2.2 灰階光罩.......................................................................................19 2.2.1灰階光罩微影技術製作立體微結構..........................................19 2.2.2 DMD灰階微影技術...................................................................22 2.3 菲涅爾透鏡製作方法...................................................................25 2.4 浸潤式微影原理與介紹...............................................................29 2.4.1 浸潤式微影所可能產生的問題................................................34 2.5 顯微鏡工作原理...........................................................................36 2.6 駐波效應…………………………………………………...……37 第三章 浸潤式動態微影系統的設計與建構..........................38 3.1藍光顯微鏡動態光罩微影系統.....................................................39 3.1.1 藍光動態光罩系統改裝............................................................40 3.2 紫外光動態光罩微影系統改裝...................................................42 3.2.1 紫外光光源................................................................................42 3.2.2 DLP內部機電改裝..................................................................44 3.2.3 三眼式顯微鏡............................................................................45 3.2.4 紫外光動態光罩微影系統........................................................47 3.2.5 高解析度動態光罩微影系統....................................................49 3.3 非接觸浸潤式曝光設計...............................................................52 3.3.1 非接觸浸潤式對光學性質的影響............................................53 3.4浸潤式薄膜夾治具設計與製作....................................................55 第四章 浸潤式動態光罩微影系統製程與實驗......................59 4.1 微影曝光流程...............................................................................59 4.1.1試片清洗......................................................................................59 4.1.2 去水烘烤....................................................................................61 4.1.3 光阻的旋佈與介面活性劑(六甲基二矽氮烷) .........................61 4.1.4 軟烤............................................................................................62 4.1.5 光罩設計方式與對位方式........................................................63 4.1.6 浸潤式曝光方式........................................................................65 4.1.7 顯影............................................................................................66 4.2 系統解析度與實驗設計...............................................................67 第五章 非接觸式藍光動態光罩系統實驗與分析..................71 5.1 藍光動態光罩微影系統-空氣中線寬曝光..................................71 5.2 藍光動態光罩微影系統-平面元件圖案曝光..............................73 5.2.1 藍光動態光罩微影系統-LED電路曝光..................................73 5.2.2 藍光動態光罩微影系統-特殊LED電路曝光.........................75 5.3非接觸浸潤式曝光法對光學性質的影響.....................................76 5.4 非接觸浸潤式藍光動態光罩微影系統實驗...............................78 5.5小結.................................................................................................79 第六章 非接觸浸潤式紫外光動態光罩系統..........................80 6.1 紫外光動態光罩微影系統...........................................................80 6.2 高解析度紫外光動態光罩微影系統...........................................85 6.2.1 高解析度紫外光動態光罩微影系統解析度測試....................87 6.2.2空氣中液態電極曝光實驗結果.................................................92 6.2.3空氣中梳狀致動器曝光實驗結果..............................................95 6.3 紫外光動態光罩系統利用灰階曝光製作立體結構...................99 6.3.1灰階曝光:微透鏡陣列製作.....................................................100 6.3.2灰階曝光:非涅爾透鏡結構製作............................................104 6.3.2.1 灰階間隔對非涅爾透鏡外形的影響....................................107 6.3.2.2 灰階間隔對非涅爾透鏡深度的影響....................................114 6.3.2.3 灰階間隔對非涅爾透鏡外環斜率的影響............................115 6.3.2.4 非涅爾透鏡焦點距離測試....................................................116 6.4 紫外光動態光罩非接觸浸潤式微影..........................................120 6.4.1 非接觸浸潤式在不同曝光介質下對解析度的影響...............122 6.4.2非接觸浸潤式在不同高分子薄膜下對解析度的影響............127 6.5 非接觸浸潤式灰階曝光製作菲涅爾透鏡..................................129 第七章 結論與未來研究.........................................................131 7.1 藍光動態光罩非接觸浸潤式曝光系統.....................................131 7.2 紫外光動態光罩非接觸浸潤式曝光系統..........................,......131 7.2.1 紫外光動態光罩解析度測試..................................................132 7.2.2 灰階曝光:微透鏡與菲涅爾透鏡..........................................132 7.3紫外光動態光罩非接觸浸潤式曝光系統解析度測試..............132 7.3.1紫外光動態光罩非接觸浸潤式曝光系統進行灰階曝光.......133 7.4 未來研究.....................................................................................133

1. T. Sandstrom and H.Martinson,“RET for optical maskless lithography‚” Proc. of SPIE 5377 1750-1763 (2004)
2. E. M. Stone, J. D. Hintersteiner, W. A. Cebuhar, R. Albright, N. K. Eib, A. Latypov, N. Baba-Ali, S. K. Poultney and E. H. Croffie,“Achieving mask-based imaging with optical maskless lithography‚” Proc. of SPIE 6151 61512E-1- 61512E-12 (2006)
3. C.Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du and C. Qiu,“Imaging Simulation of Maskless Lithography Using a DMD,” Proc. of SPIE 5645 307-314(2005)
4. J. C. Wang and M. Z. Hsieh,“Applying the one-column, many pencil local scanning maskless lithography technology to micro-RP system,” Int . J. Adv. Manuf. Technol. 41 727–733 (2009)
5. I. Wataru, T. Toshihiro, P. Yao, O. Hiroaki, S. Hiromasa, K. Yuji, M. Ryutaro and S. Renshi ,“Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment‚” Jpn. J. Appl. Phys. 51 06FB05-1-06FB05-5(2012)
6. 蔡敏隆,”運用DMD無光罩微影技術製作薄膜電晶體製程之研究”,國立台灣科技大學機械工程系,碩士學位論文,中華民國九十六年六月二十一日。
7. J. MaX. Du and Y. Liu,“Design of maskless lithography system based on DMD‚” Proc. of SPIE 6836 683612-1- 683612-8 (2007)
8. 德州儀器亞洲區DLP事業部提供,”DLP技術概要”,元件科技,2003。
9. (http://www.optoma.com.tw/product/products_business.aspx) 奧圖碼官方網站會議專用投影機型錄
10. (http://www.optoma.com.tw/product/products_home.aspx) 奧圖碼官方網站家庭專用投影機型錄
11. (http://www.optoma.com.tw/product/products_game.aspx) 奧圖碼官方網站電玩專用投影機型錄
12. (http://www.optoma.com.tw/product/products_mobile.aspx) 奧圖碼官方網站LED型投影機型錄
13. M. Ellman, A. Rodrı’guez, N. Pe’ rez, M. Echeverria, Y.K. Verevkin, C.S. Peng, T. Berthou, Z. Wange, S.M. Olaizola, and I. Ayerdi ,“High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation‚” Appl. Surf. Sci. 255 5537-5541 (2009)
14. A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C.S. Peng, T. Berthou, Z. Wang, I. Ayerdi, J. Savall and S. M. Olaizola,“Laser interference lithography for nanoscale structuring of materials: From laboratory to industry‚” Microelectron. Eng. 86 937-940 (2009)
15. A. Kiani, K. Venkatakrishnan, B. Tan and V. Venkataramanan,“Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses ‚” Opt. Express 19 (11) 10834-10842 (2011)
16. R. Gemma, L. Jordi, A. Julien, B. Xavier and P.M. Francesc,“Electron- and ion-beam lithography for the fabrication of nanomechanical devices integrated on CMOS circuits‚” Microelectron. Eng. 86 1046-1049 (2009)
17. J. Saulius, R. Lorenzo, B.Sven, P. Lloyd, E.G. Ramy and J. Sajeev,“Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths‚” Opt. Express 19 (7) 5802-5810 (2011)
18. T. Wang, M. Quaglio, F. Pirri, Y. C. Cheng, D. Busacker and F.Cerrina,“Patterning of SU-8 Resist with Digital Micromirror Device (DMD) Maskless Lithography‚” Proc. of SPIE 7274 72742O-1- 72742O-8 (2009)
19. H. Wu, W. Hu, H. C. Hu, X.W. Lin, G. Zhu, J. W. Choi, V. Chigrinov and Y. Q. Lu,“Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths‚” Opt. Express 20 (15) 16684-16689 (2012)
20. T. Hayashi, T.Shibata, T. Kawashima, E. Makino, T. Mineta , T. Masuzawa,“Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist‚” Sens. Actuator A-Phys. 144 381-388 (2008)
21. Y. L. Cheng and M. L. Lee,“Development of dynamic masking rapid prototyping system for application in tissue engineering‚”Rapid Prototyping J. 15 (1) 29-41 (2009)
22. 王群智,”使用動態光罩微影技術於單層製作3D微小元件之研究”,國立台灣科技大學機械工程系,碩士學位論文,中華民國九十四年六月三十日。
23. W. K. Hsiao and J. Y. Jeng,“Fabricating of vertical thin film transistors component using DMD maskless pohotolithography system‚” International Display Workshop MEMS4-2 1387-1390 (2007)
24. C. Sun, N. Fang, D.M. Wu and X. Zhang,“Projection micro-stereolithography using digital micro-mirror dynamic mask‚” Sens. Actuator A-Phys. 121 113-120 (2005)
25. 鄭子威,“運用動態光罩技術製作微透鏡陣列及電鑄模具之研究”,國立台灣科技大學機械工程系 碩士學位論文 中華民國九十三年六月。
26. (http://osdlab.eic.nctu.edu.tw/osdlab/chinese/DOWNLOAD/download.htm) 謝漢萍,”灰階光罩於微型光學元件之應用”,國立交通大學顯示科技研究所
27. T. Osuch, A. Kowalik, Z. Jaroszewicz and M. Sarzyński,“Fabrication of phase masks with variable diffraction efficiency using HEBS glass technology‚” Appl. Optics 50 (31) 5977-5982 (2011)
28. T. Nachmias, A. Ohayon, S.E. Melzer, M. Kabla, E. Louzon and U. Levy,“Shallow Fresnel lens fabrication using grey scale lithography made by high energy beam sensitive mask (HEBS) technology and reactive ion etching‚” Proc. of SPIE 7205 72050B-1- 72050B-12 (2009)
29. X. Guo, J. Du, Y. Guo, C. Du, Z. Cui and J. Yao,“Simulation of DOE fabrication using DMD-based gray-tone lithography,” Microelectron. Eng. 83, 1012-1016 (2006).
30. N. Luo, Y. Gao, S. He and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. of SPIE 7657, 765712-1-765712-6 (2010).
31. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi,“Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuator A-Phys. 130-131, 387-392 (2006)
32. R. Amritha, K. D. Prabhat, M. D. Rodrigo, K. Hari, J. M. Marc and S. Ashutosh ,“One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem.153 125-134(2011)
33. N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. of SPIE 7657 765712-1-765712-6 (2010)
34. N. J. Jenness, R.T. Hill, A. Hucknall, A. Chilkoti and R. L. Clark,“A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18 (11) 11754-11762 (2010)
35. K. Totsu and M. Esashi,“Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B23 1487-1492 (2005)
36. K. Mori, A. Miyazaki, H. Ogasawara, T. Nakamura, and Y. Takeuchi, “Numerical analysis of sound pressure fields focused by phase continuous Fresnel lens using finite difference time domain method,” Jpn. J. Appl. Phys. 46 4990-4997 (2007).
37. A. Gurtler, J. J. Gilijamse, A. A. R. Wetzels, L. D. Noordam, E. Sali, and M. Bellini, “Frequency selection of supercontinuum ultrashort pulses using a Fresnel zone plate,” Opt. Comm. 270 336-339 (2007)
38. V. D. Rumyantsev, “Solar concentrator modules with siliconeon- glass Fresnel lens panels and multijunction cells,” Opt. Express 18 A17-A24 (2010)
39. 4. L. Zhao, W. Duan, and S. F. Yelin, “All-optical Fresnel lens in coherent media: controlling image with image,” Opt. Express 19 981-993 (2011)
40. L.G. Niu, D. Wang, T. Jiang, S.Z. Wu, A.W. Li and J.F. Song, “High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Comm. 284 777-781 (2011)
41. R. Huszank, S.Z. Szilasi, I. Rajta and A. Csik, “Fabrication of optical devices in poly(dimethylsiloxane) by proton microbeam,” Opt. Comm. 283 176-180 (2010)
42. J. Guo, H. Ohmori, Y. Uehara, S. Morita, and K. Katahira, “Diamond cutting of a large off-axis Fresnel lens mold,” J. Vac. Sci. Technol. B 27 1345-1350 (2009)
43. C.C. Chen, M.H. Li, C.Y. Changb, J.K.Sheu, G.C. Chi, W.T. Cheng, J.H. Yeh, J.Y. Chang and T. Ito, “GaN diffractive microlenses fabricated with gray-level mask,” Opt. Comm. 215 75-78 (2003)
44. B. Morgan, C. M. Waits, J. Krizmanic and R. Ghodssi, “Development of a deep silicon phase fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13 (1) 113-120 (2004)
45. V.D. Rumyantsev, “Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells,” Opt. Express 18 (S1) A17-A24 (2010)
46. V.C. Joan, J. Konstantins, R. J¨org, P. Tero , H.F. Rainer, S. Mathias, M. Andre, R. Mikko and D.Christian, “GaN diffractive microlenses fabricated with gray-level mask,” Ultramicroscopy 109 1360-1364 (2009)
47. M. Malinauskasa, H. Gilbergsb, A. ˇZukauskasa, K. Belazarasa, V. Purlysa, M. Rutkauskasa, G. Biˇckauskait˙ea, A.j Momota, D. Paipulasa, R. Gadonasa, S. Juodkazisc and A. Piskarskasa,“Femtosecond laser fabrication of hybrid micro-optical elements and their integration on the fiber tip‚” Proc. of SPIE 7716 77160A-1-77160A-12 (2010)
48. E. Betzig and J.K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189-194 (1992)
49. (www.icknowledge.com) “ Technology backgrounder: Immersion Lithography”
50. B. J. Lin, “Immersion lithography and its impact on semiconductor Manufacturing, ” J. Microlithogr. Microfabrication, Microsyst. 3 377-395 (2004)
51. M. McCallum, M. Kameyama and S. Owa, “ Practical development and implementation of 193 nm immersion lithography, ” Microelectron. Eng. 83, 640–642 (2006)
52. A. K. Raub, A. Frauenglass, and S. R. J. Brueck, “ Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography, ” J. Vac. Sci. Technol. B22 (6) 3459-3464(2004)
53. C.C. Liu, P. F. Nealey, A. K. Raub, P. J. Hakeem, S. R. J. Brueck, E. Han and P. Gopalan,“Integration of block copolymer directed assembly with 193 immersion lithography, ” J. Vac. Sci. Technol. B28 (6) C6B30 -C6B34 (2010)
54. T. Tomita, T. Shimoaoki, M. Enomoto, H. Kyoda, J. Kitano and T. Suganaga, “An investgationon defect-generation conditions in immersion lithography, ” Proc. of SPIE 6153 61533M-1-61533M-5(2006)
55. 蕭為凱,”運用DMD無光罩微影技術製作垂直結構薄膜電晶體元件研究”,國立台灣科技大學機械工程系 碩士學位論文 中華民國九十五年六月十七日。
56. Hong Xiao,”半導體製程技術導論”,歐亞書局。
57. (http://www.nanotech.ucsb.edu/images/stories/NanoTechPDF/EquipmentPDF/LithogrophyMaterialsPDF/P4000pb.pdf) AZ P4000 data

QR CODE