簡易檢索 / 詳目顯示

研究生: 余能鈞
Neng-Chun Yu
論文名稱: IEEE 802.15.4下以優先權為基礎的適應性超碼框及保證時槽配置演算法
A Priority Based Algorithm for Adaptive Superframe Adjustment and GTS Allocation (PASAGA) in IEEE 802.15.4 LR-WAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 黎碧煌
Bih-Hwang Lee
鍾添曜
Tein-Yaw Chung
吳槐桂
Huai-Kuei Wu
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: IEEE 802.15.4物聯網無線感測網路服務品質工作週期
外文關鍵詞: IEEE 802.15.4, IoT, WSN, QoS, Duty Cycle
相關次數: 點閱:349下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網(IoT ; Internet of Things)的發展是未來網路的新趨勢,各界都在積極尋求物聯網走向的契機下,未來將會有更多裝置以及物件連接網路,帶來全方位的影響。無線感測網路(wireless sensor network ; WSN)由多個具備通訊功能而且能偵測環境資訊裝置所構成,可用於發展物聯網感知層,而裝置數量隨著網路的範圍擴大,將提高傳輸時的碰撞機率,並大幅降低網路的產能與效能。
    IEEE 802.15.4標準為了時間急迫性的應用以及滿足固定頻寬需求定義了免競爭週期,超碼框在分配免競爭週期的保證時槽時,如果未考慮資料大小,將造成頻寬破碎問題。裝置在競爭週期中,使用CSMA/CA機制進行資料傳輸,其中的後退演算法卻無法視網路的情形自行動態改變,且對於不同型態的資料或是不同裝置,皆視為同種類傳輸,無法提供保證服務品質。
    此外,超碼框的訊標級數和超碼框級數,決定活動週期與非活動週期的長度。當訊標級數降低時,裝置可以傳輸的時間增加,雖然能使產能提升但也帶來了能源消耗;而訊標級數大於超碼框級數則可以延長網路壽命但會減少產能且增加傳輸延遲時間。
    本論文提出以優先權為基礎的適應性超碼框及保證時槽配置演算法(PASAGA),改進IEEE 802.15.4標準使不同的訊號與資料在傳輸的過程中降低延遲時間、提供保證服務品質;並配置切割後的保證時槽,提升整體的頻寬利用率;設計適應性的超碼框調整工作週期,降低網路系統的能源消耗。
    模擬結果顯示PASAGA提升高優先權的有效產能以及降低高優先權的平均傳輸延遲時間,改善整體網路的能源效率,並且能經過調整參數以適應不同的環境要求。將來可以持續探討本論文的研究方向,為未來的無線感測網路研究提供參考。


    Internet of Things (IoT) development is the trend of future network. All sectors are actively seeking the opportunity to the IoT. It will have more devices and objects connected to the network and bring a all-round influence in the future. Wireless sensor network (WSN) consists of a number of communication functions and can detect the environment information, these devices can be used to develop the IoT sensor layer. The number of devices with the scope of the network to expand, will increase the probability of transmission collision and significantly reduce the network capacity and performance.
    IEEE 802.15.4 defines contention free period for the application of time urgency and the need to meet the fixed bandwidth requirements. If the packet size is not considered in the allocation of the guaranteed time slot, the bandwidth fragmentation problem will be caused. Devices use CSMA/CA mechanism for data transmission in the contention access period, which can not view the network according to the situation of self-regulation. And for different types of information or different devices are regarded as the same type of transmission, can not provide Quality of Services.
    In addition, beacon order and superframe order determines the beacon interval and superframe duration. When superframe order is decreased, the time it takes for the device to be transmitted increases, but it also brings energy consumption. While beacon order is greater than superframe order, increasing the lifetime of the network but reducing thoughtput and transmission delay.
    This thesis proposes the PASAGA (A Priority Based Algorithm for Adaptive Superframe Adjustment and GTS Allocation). Improve the IEEE 802.15.4 so that different signals and data in the transmission process to reduce the delay and provide Quality of Services. And allocate the new guaranteed time slot to enhance the overall bandwidth utilization. Then design the adaptive superframe to adjust the duty cycle and reduce the energy consumption of the network system.
    The simulation results show that PASAGA improves the effective capacity of high priority, reduces the average transmission delay of high priority and improves the overall network energy efficiency. In addition, it can adjust the parameters to meet the different environmental requirements. In the future, we can continue to explore the research direction of this paper, and provide reference for future WSN research.

    摘要 i Abstract ii 誌謝 iv 目次 v 圖目次 vii 表目次 x 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節摘要 3 第二章 IEEE 802.15.4標準 4 2.1 IEEE 802.15.4標準簡介 4 2.2.1 IEEE 802.15.4標準之裝置類別 4 2.2.2 IEEE 802.15.4標準之網路拓樸結構 5 2.2.3 實體層 6 2.2.4 媒體存取控制副層介紹 9 2.2.5 載波偵測多重存取/碰撞避免機制 11 2.2.6 保證時槽分配 14 2.2.7 資料傳輸模型 17 2.2.8 訊框格式 22 2.2 相關研究 29 2.2.1 保證傳輸服務品質 30 2.2.2 保證時槽頻寬浪費改善 30 2.2.3 動態調整超碼框 31 第三章 PASAGA介紹 33 3.1 研究方法 33 3.2 CSMA/CA傳輸參數改善 33 3.3 保證時槽切割配置 36 3.4 動態調整超碼框 38 3.4.1 免競爭週期之調整條件 38 3.4.2 競爭週期之調整條件 40 3.4.3 延遲時間之調整條件 41 3.5 工作週期調整演算法 42 3.5.1 情境一 43 3.5.2 情境二 43 3.5.3 情境三 44 3.5.4 情境四 45 3.5.5 情境五 46 3.5.6 情境六 47 3.6 裝置流程 48 3.7 協調者流程 49 第四章 系統模擬與結果分析 51 4.1 模擬環境參數 51 4.2 效能評估項目 52 4.2.1 有效產能 52 4.2.2 平均傳輸延遲時間 52 4.2.3 能源效率 53 4.3 結果分析 53 4.3.1 有效產能分析 53 4.3.2 延遲時間分析 58 4.3.3 能源效率分析 63 第五章 結論與未來研究 67 參考文獻 69

    [1] J. A. Stankovic, "Research Directions for the Internet of Things," in IEEE Internet of Things Journal, vol. 1, no. 1, pp. 3-9, Feb. 2014.
    [2] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang and V. C. M. Leung, "Lightweight Management of Resource-Constrained Sensor Devices in Internet of Things," in IEEE Internet of Things Journal, vol. 2, no. 5, pp. 402-411, Oct. 2015.
    [3] A. Aijaz and A. H. Aghvami, "Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective," in IEEE Internet of Things Journal, vol. 2, no. 2, pp. 103-112, April 2015.
    [4] Q. Le, T. Ngo-Quynh and T. Magedanz, "RPL-based multipath Routing Protocols for Internet of Things on Wireless Sensor Networks," 2014 International Conference on Advanced Technologies for Communications (ATC 2014), Hanoi, 2014, pp. 424-429.
    [5] M. Banh, H. Mac, N. Nguyen, K. H. Phung, N. H. Thanh and K. Steenhaut, "Performance evaluation of multiple RPL routing tree instances for Internet of Things applications," 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, 2015, pp. 206-211.
    [6] H. Rasouli, Y. S. Kavian and H. F. Rashvand, "ADCA: Adaptive Duty Cycle Algorithm for Energy Efficient IEEE 802.15.4 Beacon-Enabled Wireless Sensor Networks," in IEEE Sensors Journal, vol. 14, no. 11, pp. 3893-3902, Nov. 2014.
    [7] S. Jardosh, P. Ranjan and D. Rawal, "Prioritized IEEE 802.15.4 for wireless sensor networks," 2010 Wireless Advanced 2010, London, 2010, pp. 1-7.
    [8] A. Koubaa, M. Alves, E. Tovar, "i-GAME: an Implicit GTS Allocation Mechanism in IEEE 802.15.4 for Time-Sensitive Wireless Sensor Networks", Proc. 18th Euromicro Conf. Real-Time Systems (ECRTS'06), pp. 183-192, Jul. 2006.
    [9] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp.1-314, 2011.
    [10] M. Khanafer, M. Guennoun and H. T. Mouftah, "A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks," in IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 856-876, Second Quarter 2014.
    [11] 董勁宏,「在IEEE 802.15.4下智慧電網中家庭區域網路之控制訊號服務品質分析與研究」,碩士論文,國立臺灣科技大學,臺北市,2013。
    [12] 張軒豪,「IEEE 802.15.4用於智慧電網家庭區域網路之有效傳輸機制研究」,碩士論文,國立臺灣科技大學,臺北市,2014。
    [13] Qiong Liu and A. Czylwik, "Study on adaptive priority-based service-differentiation scheme for IEEE 802.15.4 Wireless Sensor Networks," 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal, 2014, pp. 1-6.
    [14] 周允莉,「IEEE 802.15.4低速率無線個人區域網路下之有效保證時槽配置機制」,碩士論文,國立臺灣科技大學,臺北市,2007。
    [15] M. U. H. Al Rasyid, Bih-Hwang Lee and A. Sudarsono, "PEGAS: Partitioned GTS allocation scheme for IEEE 802.15.4 networks," 2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Jakarta, 2013, pp. 29-32.
    [16] C. L. Ho, C. H. Lin, W. S. Hwang and S. M. Chung, "Dynamic GTS Allocation Scheme in IEEE 802.15.4 by Multi-Factor," 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Piraeus, 2012, pp. 457-460.
    [17] C. H. S. Oliveira, Y. Ghamri-Doudane and S. Lohier, "A duty cycle self-adaptation algorithm for the 802.15.4 wireless sensor networks," Global Information Infrastructure Symposium - GIIS 2013, Trento, 2013, pp. 1-7.
    [18] T. D. Nguyen, J. Y. Khan and D. T. Ngo, "An energy and QoS-aware packet transmission algorithm for IEEE 802.15.4 networks," 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, 2015, pp. 1255-1260.
    [19] A. Farhad, S. Farid, Y. Zia and F. B. Hussain, "A delay mitigation dynamic scheduling algorithm for the IEEE 802.15.4 based WPANs," 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, 2016, pp. 1-5.

    QR CODE