簡易檢索 / 詳目顯示

研究生: 黃景勤
Ching-Chin Huang
論文名稱: 以新型脊狀侷限結構研製氮化鎵垂直共振腔面射型光源
GaN-based vertical cavity surface emitting diodes with novel ridge confinement structure
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 黃鶯聲
Ying-Sheng Huang
李志堅
Chih-Chien Lee
陳致曉
Chih-Hsiao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化矽表面出光垂直共振腔
外文關鍵詞: vertical cavity, surface emitting, silicon dioxide
相關次數: 點閱:299下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用乾式蝕刻與氧化物製作新型脊狀載子侷限結構並應用於研發氮化鎵垂直共振腔面射型光源。目前最常使用之侷限結構為氧化物侷限,而常用的方式多為蒸鍍或濺鍍氧化物於晶圓上來製作載子侷限結構。本論文分別製作傳統的脊狀結構與新型脊狀結構來評估載子與光子侷限效果。 載子侷限結構的出光孔徑設計為5μm、8μm、12μm與15μm。並分別在透明導電層與P型電極完成後量測其光電特性與侷限效果,並在高反射鍍膜後做比較。 我們將新型脊狀結構應用在研製氮化鎵垂直共振腔面射型光源上,並比較傳統與新型兩種結構的光電特性。量測結果證實傳統脊狀結構元件比新型結構更容易導通出光孔徑外的地方,因此電流路徑截面積較大,電阻較小。載子與光子侷限,新型擠狀結構看來比脊狀結構好,但因二者均尚未雷射,未能明確比較。


    In this work, we developed a new means to make carrier confinement structure for GaN-based vertical cavity surface-emitting lasers (VCSEL) that used dry etching and oxide layer. Oxide confinement is the most commonly used confinement structure that is usually made by patterning vapor-deposition oxide or sputter oxide on the wafer. In this work, conventional ridge structure and novel ridge structure were fabricated and evaluated in order to provide both carrier and photon confinement. During fabrication, the electrical and optical properties were characterized after each completion of transparent conductive layer, the P-type electrode, and the high-reflection coating, respectively. The aperture sizes of the confinement structures designed were 5μm, 8μm, 12μm and 15μm.
    The two confinement structures were compared. Both showed good confinement up to high current density level and it appeared that the area outside the emitting aperture of the conventional ridge structure was easier to be turned on than that of the novel ridge structure. And the I-V curves showed the resistance of the conventional ridge structure was smaller due to larger current spreading. Therefore the carrier and photon confinement of the novel ridge structure seemed be better than the conventional one. However, both devices have not lased yet due to several issues, the comparison is not decisive.

    摘要 ..................................................... I Abstract ................................................ II 致謝 .................................................... IV 圖表目錄 .............................................. VIII 表格目錄 ............................................... XII 第一章 導論 .............................................. 1 1.1緒論 ................................................ 1 1.2文獻回顧 ............................................ 5 1.3 研究動機與目的 ..................................... 7 第二章 垂直共振腔表面出光雷射與侷限結構設計 .............. 8 2.1垂直共振腔表面出光雷射介紹 .......................... 8 2.1.1 布拉格反射鏡(Distributed Bragg Reflector) ...... 10 2.1.2 DBR半導體雷射 ................................. 14 2.2載子與光學侷限結構設計 ............................. 16 2.2.1脊狀結構(Ridge) ................................ 18 2.2.2二氧化矽次微米球(Silica submicron spheres) ...... 19 第三章 製程方法與儀器介紹 ............................... 22 3.1製程方法與使用材料 ................................. 22 3.1.1使用材料 ....................................... 22 3.1.2製程步驟 ....................................... 23 3.1.3氮化鎵雷射製程 ................................. 26 3.2製程儀器介紹 ....................................... 40 3.2.1 感應耦合電漿式離子蝕刻機(ICP-RIE ,inductively-coupled plasma reactive ion etching) ..................................................... 41 3.2.2 電子束蒸鍍機 (Electron-beam evaporator) ........ 42 3.2.3 射頻濺鍍機 (RF Sputter) ........................ 43 3.2.4 電子槍介電質鍍膜機(Electron gun dielectric evaporator system) ................................... 44 3.3量測儀器介紹 ....................................... 46 3.3.1 光激發螢光(Photoluminescence, PL)量測系統 ...... 46 3.3.2 L-I與I-V 量測系統 ............................. 47 3.3.3 積分球與I-V 量測系統 .......................... 49 3.3.4掃描式電子顯微鏡(scanning electron microscope) .. 52 第四章 實驗結果與討論 ................................... 55 4.1利用乾式蝕刻製作脊狀載子侷限結構 ................... 58 4.2利用二氧化矽球製作氧化物載子侷限結構 ............... 68 結果比較 ................................................ 80 第五章 結論與未來展望 ................................... 88 參考文獻 ................................................ 91

    [1] S. Nakamura, M. Senoh, S. –I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T.Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420mW,”Jpn. J. Appl. Phys., vol. 37, pp. L627-L629, 1998.
    [2] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 329−2330, 1979.
    [3] H. M. Ng, T. D. Moustakas , and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett. , vol.76, pp.2818, 2000.
    [4] G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. –W. Lin, and L. Chang, ”Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. , vol.88, pp.061904, 2006.
    [5] T. Someya and Y. Arkawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. , vol.73, pp.3653, 1998.
    [6] K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett. , vol.78, pp.3205, 2001.
    [7] J. –F. Carlin and M. Ilegems, “High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN,” Appl. Phys. Lett. , vol.83, pp.668-670, 2003.
    [8] E. Feltin, J. –F. Carlin, J. Dorsaz, G. Chistmann, R. Butte, M. Laugt, M. Ilegems, and N. Grandjean, “Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications,” Appl. Phys. Lett. , vol.88, pp.051108, 2006.
    [9] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, “An optically pumped GaN-AlGaNvertical cavity surface emitting laser,” Appl. Phys. Lett. , vol.69, pp.1-3, 1996.
    [10] C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, and S. C. Wang, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett., vol. 87, pp. 081105, 2005.
    [11] T.-C. Lu, C.-C. Kuo, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 92, pp. 141102 , 2008.
    [12] T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, H.-C. Kuo, and S.-C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett., vol. 97, pp. 071114 , 2010.
    [13] Y. Higuchi, K. Omae, H. Matsumura, T. Mukai“Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express vol. 1, pp. 121102, 2008.
    [14] Kunimichi Omae, Yu Higuchi, Kyosuke Nakagawa, Hiroaki Matsumura, and Takashi Mukai, “Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate,” Appl. Phys. Express vol. 2, pp. 052101, 2009.
    [15] Gatien Cosendey, Antonino Castiglia, Georg Rossbach, Jean-Francois Carlin, and Nicolas Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101, 151113, 2012.
    [16] Kenichi Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, 6,2000.
    [17] Y. –K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames,”A vertical cavity light emitting InGaNquantum well heterostructure,” Appl. Phys. Lett. , vol.74, pp.3441-3443, 1999.
    [18] J. –T Chu, T. –C. Lu, M. You, B. –J. Su, C. –C. Kao, H. -C. Kuo, and S. -C. Wang, “Emission characteristic of optically pumped GaN-based vertical-cavity-surface-emitting lasers,” Appl. Phys. Lett. , vol.89, pp.121112, 2006.
    [19] T. Someya, K. Tachibana, J. Lee, T. Kamiya, and
    Y. Arakawa, “Lasing emission from an IN0.1Ga0.9N vertical cavity surface emitting laser,” Jpn. J. Appl. Phys. Lett., vol.37, pp.L1424-L1426, 1998.
    [20] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science, vol.285, pp. 1905-1906, 1999.
    [21] 廖彥超, 有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響, 國立台灣科技大學電子工程所碩士論文 , 2011.
    [22] 陳景煌, 氮化鎵發光二極體串聯電阻最低化的元件電路模型與製程改進, 國立台灣科技大學光電工程所碩士論文, 2012
    [23] 黃彥翔, 氮化鎵表面粗糙化技術研發與相關太陽能電池特性之探討, 國立台灣科技大學光電工程所碩士論文, 2012
    [24] 盧廷昌, 王興宗 “半導體雷射技術 ,” 五南圖書

    QR CODE