簡易檢索 / 詳目顯示

研究生: 劉智丞
Chih-Cheng Liu
論文名稱: 麥克納姆輪全向車之訊號式與模型式車輪故障檢測
Signal-based and Model-based Wheel Fault Detection of Omni-directional Vehicle with Mecanum Wheel
指導教授: 藍振洋
Chen-yang Lan
張以全
I-Tsyuen Chang
口試委員: 藍振洋
張以全
劉孟昆
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 144
中文關鍵詞: 麥克納姆輪全向車車輪故障故障檢測參數鑑別
外文關鍵詞: Mecanum wheel, omni-directional vehicle, wheel fault, fault detection, parameter identification
相關次數: 點閱:314下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因工業4.0的興起,促使自動化產線與無人工廠蓬勃的發展。而這些自動化工廠常常需要自主式(Autonomous)的無人搬運車(Automatic guided vehicle)來輔助,以維持產線運作。然其工作環境可能狹窄且侷限。而常見的阿克曼機構(Ackermann steering geometry)的無人搬運車轉彎時具有最小迴轉半徑(Radius of turn)之要求,所以此型之無人搬運車的車體尺寸要求以及使用環境限制較多。另一方面,全向車(Omni-directional vehicle)在移動上之機動性與靈活度非常高,具全向性且可隨時向任何方向移動,屬於完整系統(Holonomic system),也無最小迴轉半徑的限制,在移動上極具優勢。全向車系統其應用領域廣大,例如輪椅、活動床等生活領域,或是無人搬運車、機械手臂結合等工業領域,具有極高的發展與應用價值。然而,自主式的系統最令人擔憂的是潛在之突如其來的故障或失效。其後果可能造成金錢上的損失,甚至影響人員的安危。
    本研究探討使用常見的特殊輪,麥克納姆輪(Mecanum wheel)的全向車。全向車具備全向性皆因麥克納姆輪的特殊結構,所以若其車輪產生故障,很可能導致全向車失去全向性。故本研究探討兩個針對麥克納姆輪全向車的車輪故障檢測(Wheel fault detection)之方法,分別使用訊號式與模型式之方法進行故障檢測。研究探討的車輪故障預設案例為麥克納姆輪上之小輪被異物卡住導致小輪無法轉動之故障。其中訊號式方法利用加速度感測器測量車體振動,在利用快速傅立葉轉換(Fast Fourier transform)對訊號進行分析,再設立故障指標與閥值進行故障檢測。而模型式方法則利用全向車馬達的輸入與輸出,以具有遺忘因子(Forgetting factor)之遞迴最小平方法(Recursive least square)進行參數鑑別,再利用鑑別之參數變化進行故障檢測。透過模擬與實驗證實兩種方法的假設與可行性,並比較其優缺點。


    Driven by Industry 4.0, automated production lines and unmanned factories have drawn much attention and thus flourished in many applications. These automated factories often require autonomous vehicles to operate production lines. The operating environment for the vehicle is usually narrow and confined. On the other hand, the common Ackermann steering geometry automatic guided vehicle have a minimum radius of turning. Therefore, there are limitations on using Ackermann automatic guided vehicle such as its size and space restriction. In contrast, omni-directional vehicles have high mobility and flexibility and are omnidirectional to move in any direction at any time. They are holonomic system with zero radius of gyration. The omni-directional vehicle system has a wide range of applications, such as wheelchairs, automatic guided vehicles form house-hold application to industrial application. Thus, theresearch and development in autonomous omni-directional vehicles has extremely high value in many aspects. However, the most concerning issue regarding to the opearion of an autonomous system is its reliability and the potential consequence of its unexpected failures, which may cause financial losses and even safety hazzards.
    In this research, the Mecanum wheel coustructed omnidirectional vehicle is under consideration. Due to Mecanum wheel’s roller arrangement, the vehicle is omni-directional. However, this special feature is degredated or lossed if the wheel fails. Therefore, two fault detection methods, signal-based and model-based, for Mecanum wheel omni-directional vehicles are investigated for wheel fault. These two methods are applied to Mecanum wheel fault simulated for the situation that the rollers are stucked due to a foreign object. An acceleration sensor is used to measure vehicle body vibration for signal-based method. The recorded vibration date is further analized using Fast Fourier Transform to explore its frequency content and then associated fault indicators are observed and corresponding thresholds established for fault detection. The model-based method uses the input and output data of the omni-directional vehicle motor to identify associated parameters by using the Recursive Least Square method with a forgetting factor. Those identified system parameters are then used as indicators for fault detection. The capability and performance of these two methods under considered Mecanum wheel fault are compared in simulation and with experiment result.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機與目的以及本文架構 12 第二章 麥克納姆輪全向車模型 13 2.1 運動學模型(Kinematics model) 13 2.2 動力學模型(Dynamics model) 18 2.3 動態方程式 19 2.4 車輪故障之運動分析 20 第三章 訊號式與模型式故障檢測之檢測方法 22 3.1 訊號式故障檢測 22 3.2 模型式故障檢測 30 第四章 實驗結果 39 4.1 實驗架設 39 4.2 實驗一:不同路徑與轉速 49 4.3 實驗二:不同路面狀況 66 4.4 實驗三:不同負載 78 4.5 實驗結果 87 第五章 結論與未來展望 89 5.1結論 89 5.2 研究貢獻 90 5.3 未來展望 91 參考文獻 93 附錄A 表附錄 98 附錄B 圖附錄 109

    [1] M. J. A.Safar, “Holonomic and omnidirectional locomotion systems for wheeled mobile robots: A review,” Jurnal Teknologi, vol. 6, pp. 1–11, 2015.
    [2] I.Bengt Erland. "Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base." U.S. Patent No. 3,876,255. 8 Apr. 1975.
    [3] F.Adǎscǎliţei and I.Doroftei, “Practical applications for mobile robots based on mecanum wheels - a systematic survey,” The Romanian Review Precision Mechanics, Optics and Mechatronics, no. 40, pp. 21–29, 2011.
    [4] S. L.Dickerson and B. D.Lapin, “Control of an omni-directional robotic vehicle with Mecanum wheels,” NTC'91-National Telesystems Conference Proceedings, pp. 323–328, 1991.
    [5] A.Typiak, M. J.Łopatka, Ł.Rykała, and M.Kijek, “Dynamics of omnidirectional unmanned rescue vehicle with mecanum wheels,” AIP Conf. Proc., vol. 1922, 2018.
    [6] P.Viboonchaicheep, A.Shimada, andY.Kosaka, “Position Rectification Control for Mecanum Wheeled Omni-directional Vehicles,” IECON Proc. (Industrial Electron. Conf., vol. 1, pp. 854–859, 2003.
    [7] N.Tlale and M.DeVilliers, “Kinematics and dynamics modelling of a mecanum wheeled mobile platform,” 15th Int. Conf. Mechatronics Mach. Vis. Pract. M2VIP’08, no. 3, pp. 657–662, 2008.
    [8] X.Lu, X.Zhang, G.Zhang, and S.Jia, “Design of Adaptive Sliding Mode Controller for Four-Mecanum Wheel Mobile Robot,” Chinese Control Conf. CCC, vol. 2018-July, pp. 3983–3987, 2018.
    [9] V.Alakshendra and S. S.Chiddarwar, “A robust adaptive control of mecanum wheel mobile robot: Simulation and experimental validation,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2016-Novem, pp. 5606–5611, 2016.
    [10] P.Wu, K.Wang, J.Zhang, and Q.Zhang, “Optimal Design for PID Controller Based on de Algorithm in Omnidirectional Mobile Robot,” MATEC Web Conf., vol. 95, pp. 3–7, 2017.
    [11] Z.Lieping, H.Chaoning, and C.Peng, “Design of Limited Power Omni-Directional Vehicle Based on Chassis Follow,” Proc. - 2nd Int. Conf. Smart City Syst. Eng. ICSCSE 2017, pp. 10–13, 2017.
    [12] V.Alakshendra and S. S.Chiddarwar, “Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties,” Nonlinear Dyn., vol. 87, no. 4, pp. 2147–2169, 2017.
    [13] C. H.Kuo, “Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control,” Proc. 2016 Int. Conf. Instrumentation, Control. Autom. ICA 2016, pp. 54–59, 2016.
    [14] A. H. F. S.Ahmad Jamil, R.Omar, S.Yaacob, and . F.Mokhtar, “Development of fuzzy PID controller for Mecanum wheel robot,” Int. J. Appl. Eng. Res., vol. 12, no. 24, pp. 14478–14483, 2017.
    [15] E.Malayjerdi, H.Kalani, and .Malayjerdi, “Self-Tuning Fuzzy PID Control of a Four-Mecanum Wheel Omni-directional Mobile Platform,” 26th Iran. Conf. Electr. Eng. ICEE 2018, pp. 816–820, 2018.
    [16] K. L.Moore and . S.Flann, “Hierarchical task decomposition approach to path planning and control for an omni-directional autonomous mobile robot,” IEEE Int. Symp. Intell. Control - Proc., pp. 302–307, 1999.
    [17] M. Y.Naing, Oo San, A., I.Nilkhamhang and T.Than, “Development of Computer Vision-Based Movement Controlling in Mecanum Wheel Robotic Car,” First Int. Symp. Instrumentation, Control. Artif. Intell. Robot. pp. 45–48, 2019.
    [18] K. wooJeong, J.Lee, and M. C.Lee, “Energy-saving trajectory planning for an inverse ball drive robot with Mecanum wheels,” Int. J. Control. Autom. Syst., vol. 15, no. 2, pp. 752–762, 2017.
    [19] L.Xie, C.Henkel, K.Stol, and W.Xu, “Power-minimization and energy-reduction autonomous navigation of an omnidirectional Mecanum robot via the dynamic window approach local trajectory planning,” Int. J. Adv. Robot. Syst., vol. 15, no. 1, pp. 1–12, 2018.
    [20] J.Kim, S.Woo, J.Kim, J.Do, S.Kim, and S.Bae, “Inertial navigation system for an automatic guided vehicle with Mecanum wheels,” Int. J. Precis. Eng. Manuf., vol. 13, no. 3, pp. 379–386, 2012.
    [21] Z.Li, D.Zhou, and Y.Huang, “Design of Outdoor Following Vehicle System Based on GPS-INS Fusion Navigation Algorithm,” Proc. 2018 2nd IEEE Adv. Inf. Manag. Commun. Electron. Autom. Control Conf. IMCEC 2018, vol. 0, no. Imcec, pp. 1285–1289, 2018.
    [22] K.Piemngam, I.Nilkhamhang, and P.Bunnun, “Development of Autonomous Mobile Robot Platform with Mecanum Wheels,” 2019 1st Int. Symp. Instrumentation, Control. Artif. Intell. Robot. ICA-SYMP 2019, pp. 90–93, 2019.
    [23] A.Shimada, S.Yajima, P.Viboonchaicheep, and K.Samura, “Mecanum-wheel vehicle systems based on position corrective control,” IECON Proc. (Industrial Electron. Conf., vol. 2005, pp. 2077–2082, 2005.
    [24] L.Xie, C.Scheifele, W.Xu, and K. A.Stol, “Heavy-duty omni-directional Mecanum-wheeled robot for autonomous navigation: System development and simulation realization,” Proc. - 2015 IEEE Int. Conf. Mechatronics, ICM 2015, pp. 256–261, 2015.
    [25] P.Vlantis, C. P.Bechlioulis, G.Karras, G.Fourlas, and K. J.Kyriakopoulos, “Fault tolerant control for omni-directional mobile platforms with 4 mecanum wheels,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 2395–2400, 2016, doi: 10.1109/ICRA.2016.7487389.
    [26] S.Mishra, M.Sharma, and M.Santhakumar, “Behavioural Fault-tolerant-control of an Omni-directional Mobile Robot with Four-mecanum Wheels,” vol. 69, no. 4, pp. 353–360, 2019.
    [27] S.Mellah, G.Graton, E. M. E.Adel, M.Ouladsine, and A.Planchais, “Detection isolation of sensor and actuator additive faults in a 4-mecanum wheeled mobile robot (4-MWMR),” 2019 Int. Conf. Control. Autom. Diagnosis, ICCAD 2019 - Proc., 2019.
    [28] S.Mellah, G.Graton, E. M. E.Adel, M.Ouladsine, and A.Planchais, “4-mecanum wheeled mobile robot actuator fault detection & isolation using unknown input observer-based approach,”, European Control Conference, ECC. 2020.
    [29] G. C.Karras and G. K.Fourlas, “Model Predictive Fault Tolerant Control for Omni-directional Mobile Robots,” J. Intell. Robot. Syst. Theory Appl., vol. 97, no. 3–4, pp. 635–655, 2020.
    [30] Y.Zhang and J.Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2. pp. 229–252, 2008.
    [31] M. Luo et al., “Model-based fault diagnosis/prognosis for wheeled mobile robots: A review,” IECON Proc. (Industrial Electron. Conf., vol. 2005, pp. 2267–2272, 2005.
    [32] J. L.Crassidis, and J. L.Junkins, “Optimal estimation of dynamic systems,” CRC press,2011.
    [33] 陳志忠. 感應交流馬達旋轉設備振動特徵分析. 國立台灣科技大學機械工程系碩士學位論文. 2017.
    [34] 涂金堂. SPSS 與量化研究. 五南圖書出版股份有限公司. 2010
    [35] John E.Freund, 陳臺芳, 余峻瑜. 基礎統計學. 台灣培生教育出版股份有限公司. 2004.
    [36] M.Badoni, A.Singh, and B.Singh, “Variable Forgetting Factor Recursive Least Square Control Algorithm for DSTATCOM,” vol. 30, no. 5, pp. 2353–2361, 2015.
    [37] K.Lynch, N.Marchuk, and M.Elwin, “Embedded computing and mechatronics with the PIC32 microcontroller,” Newnes,2015.
    [38] 郭翰. 無感測器之阻抗控制應用於Delta機械臂. 國立台灣科技大學機械工程系碩士學位論文. 2019.

    QR CODE