簡易檢索 / 詳目顯示

研究生: 李連智
Jenni Lie
論文名稱: 使用次臨界水和微波從電子廢棄物中強化萃取回收關鍵金屬
Intensified Leaching of Critical Metals from E-wastes Using Subcritical Water and Microwave Followed by Selective Recovery
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 蔡伸隆
Shen-Long Tsai
王孟菊
Meng-Jiy Wang
郭俞麟
Yu-Lin Kuo
劉志成
Jhy-Chern Liu
村岡雅弘
Masahiro Muraoka
Suryadi Ismadji
Suryadi Ismadji
朱信
Chu Hsin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 156
中文關鍵詞: 電子廢棄物萃取微波螢光粉稀土元素回收
外文關鍵詞: E-waste, Leaching, Microwave, Phosphor, Rare earth elements, Recovery
相關次數: 點閱:331下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於電子廢棄物所含有的關鍵金屬具備極大回收與再利用潛力。此研究探討其內含之稀土金屬、鋰、鈷和錳以程序強化形式進行萃取回收,並且隨後進行選擇性沉澱。實驗中的三種電子廢棄物個別採用不同萃取溶液與程序進行回收處理。廢棄陰極射線管螢光粉含有釔和銪,該稀土元素透過硫酸作為萃取劑,分別以開放與封閉容器形式進行微波輔助萃取。廢棄鋰電池中含有鋰、鈷與錳,其透過抗壞血酸做為酸性來源與還原劑,於封閉式微波反應器中進行萃取。廢棄鎳氫電池中含有鑭、鈰和釹,進行兩階段式萃取。首先,使用半導體製程的廢棄磷酸進行傳統萃取,將重金屬析出,並且轉換稀土元素為磷酸鹽沉澱物;再透過硫酸進行第二階段次臨界流體萃取,即可有效萃取所有金屬。實驗過程中,評估酸與固體濃度、萃取溫度與動力式,以及能量需求等重要參數對萃取效率之影響。使用2M硫酸溶液、固體濃度10g/L、萃取時間30分鐘與反應溫度125°C的情況下,金屬釔和銪的分別獲得86.67% 和 100%的最佳萃取效率。相較於傳統加熱方法,封閉容器式微波萃取程序更加快速,且作為從廢棄陰極射線管螢光粉中回收稀土金屬的有效方法。以結晶產物 (Y0.95Eu0.05)2O3 的形式,釔和銪的回收效率為 96.9 ± 0.26% 和 86.6 ± 0.76% 。使用0.5M抗壞血酸、加熱梯度 40°C/分鐘、固體濃度10g/L、反應時間 10分鐘與反應溫度125°C的情況下,廢棄鋰電池中的鋰、鈷與錳可以完全萃取。使用 0.1M抗壞血酸即可將廢棄鋰電池中的Co (III)還原為Co (II),並透過XPS所得實驗結果證明。加入草酸後,萃取液中的鈷與錳的回收效率可達到97.66%與 58.99%。透過廢棄磷酸,第一階段之傳統萃取法即可以去除廢棄鎳氫電池中60 到 100% 的重金屬,而其中超過90%的稀土金屬被轉化為不易溶解的磷酸鹽形式。使用1M硫酸、固體濃度20g/L、反應時間 30分鐘與反應溫度125°C的情況下,稀土元素、鎳、鈷和錳可被完全萃取。利用次臨界流體萃取裝置中萃取液pH值的調整,稀土元素得以被選擇性回收。在pH值為1的情況下,鑭、鈰和釹在鹼金屬雙硫酸鹽沉澱物 NaREE(SO4)2·H2O 的形式之下,分別獲得82.59% 、 90.75% 和 85.97% 的回收效率,而SEM和XRD可證實其沉澱物為六方棒狀晶體。由此實驗結果得知:該複合式回收程序可作為從電子廢棄物中回收貴金屬的替代性方案,並從中實現永續性、循環經濟與環保價值。


The presence of critical metals in electronic waste (e-waste) provides great potential of recovery and reuse. The current study investigated leaching and recovery of critical metals including rare earth elements (REEs), Li, Co and Mn, from e-waste using process intensification followed by selective precipitation. Three kinds of e-waste were treated using different leaching process and leaching agent. Yttrium (Y) and europium (Eu) as critical rare earth elements (REEs) from waste CRT phosphor were leached out using sulfuric acid (H2SO4) solution in open- and closed-vessel microwave-assisted leaching. Lithium (Li), cobalt (Co), and manganese (Mn) from spent lithium ion batteries (LIBs) were leached out using ascorbic acid as acid and reducing reagent in closed-vessel microwave. Lanthanum (La), cerium (Ce), and neodymium (Nd) from spent nickel metal hydride (NiMH) batteries using two-stage leaching, firstly by conventional leaching with waste H3PO4 from semiconductor company for heavy metals and converting REEs to REE(PO4), and followed by second-stage subcritical water extraction (SWE) with H2SO4 for the complete leaching for all metals. Important parameters such as, the effects of acid strength, solid concentration, leaching temperature and kinetics, and energy requirement were assessed. Leaching efficiency of Y and Eu was 86.67% and 100%, respectively using 2 M of H2SO4 solution, at 10 g/L of solid concentration, 125°C, within 30 min of leaching time. When comparing with conventional heating process, closed-vessel microwave leaching process proved to be rapid, effective and efficient for REEs recovery from waste CRT phosphor. The crystallized product of (Y0.95Eu0.05)2O3 was obtained with the recovery efficiency of 96.9 ± 0.26% for Y and 86.6 ± 0.76% for Eu. Complete leaching of Li, Co, and Mn from spent LIBs was obtained using 0.5 M of ascorbic acid, 40°C/min heating rate, 10 g/L, 125°C within 10 min of microwave-assisted extraction. Ascorbic acid could induce reduction of Co (III) in spent LIBs to Co (II), as evidenced by XPS analysis. Total of 97.66% of Co and 58.99% of Mn in leaching solution were recovered on the addition of oxalic acid. The first-stage conventional leaching removed 60 to 100% heavy metals, such as Ni, Co, Zn and Cd from spent NiMH batteries using waste H3PO4, and converted more than 90% REEs into insoluble REE(PO4) precipitates. Complete leaching of REEs, Ni, Co and Mn were achieved using 1 M of H2SO4 at 125°C for 30 min, of solid concentration of 20 g/L. REEs were selectively recovered by inducing precipitation through pH adjustment of leaching solutions of SWE. Precipitation at pH 1 resulted in 82.59% of La, 90.75% of Ce, and 85.97% of Nd recovered as REE alkali double sulfate precipitates, NaREE(SO4)2·H2O, with hexagonal rod-shape crystals. This study could be an alternative for comprehensive recovery process of critical metals from e-waste that benefits sustainability, metal circular economy and environmentally friendliness.

CHAPTER 1 1-1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Object of study 1-5 CHAPTER 2 2-1 LITERATURE REVIEW 2-1 2.1 Critical Metals in E-waste 2-1 2.2 Recovery of Y and Eu from waste CRT phosphor 2-4 2.3. Electric vehicle batteries 2-10 2.3.1 Lithium-ion batteries (LIBs) 2-10 2.3.2 Nickel metal hydride (NiMH) batteries 2-13 2.4. Recovery of valuable metals from spent batteries 2-14 2.4.1. Leaching of valuable metals from spent LIBs 2-16 2.4.2. Leaching of valuable metals from spent NiMH batteries 2-21 2.5 Process Intensification 2-23 2.5.1 Subcritical water extraction 2-24 2.5.2 Microwave assisted extraction 2-26 CHAPTER 3 3-1 MATERIALS AND METHODS 3-1 3.1 Materials 3-1 3.2. Instruments 3-2 3.3. Methods 3-3 3.3.1 Pretreatment of e-waste 3-3 3.3.2 Waste phosphoric acid properties 3-4 3.3.3 Sample analysis 3-4 3.3.4 Microwave leaching 3-7 3.3.5 Subcritical water extraction 3-10 3.3.6 Conventional leaching 3-11 3.3.7 Acid Washing of spent NiMH batteries 3-11 3.3.8 REEs recovery from leaching solution 3-12 3.3.9 Thermodynamic modeling software (PHREEQC) 3-13 CHAPTER 4 4-1 RESULTS AND DISCUSSION 4-1 4.1. Recovery of Y and Eu from waste CRT phosphor 4-1 4.1.1. Waste CRT phosphor characterization 4-1 4.1.2. Effect of microwave power in open-vessel microwave 4-3 4.1.3. Effect of acid concentration 4-4 4.1.4. Effect of temperature in closed-vessel microwave 4-10 4.1.5. Comparison of leaching efficiency and energy consumption 4-14 4.1.6. Leaching residue 4-17 4.1.5.Y and Eu recovery 4-18 4.2. Recovery of Li, Co, and Mn from spent LIBs 4-22 4.2.1. Characterization of spent LIBs 4-22 4.2.2. Heating rate and microwave power 4-26 4.2.3 Effect of ascorbic acid concentration and leaching mechanism 4-28 4.2.4 Effect of temperature and leaching kinetics 4-32 4.2.5 Comparison of leaching processes 4-36 4.2.6 Recovery of valuable metals 4-38 4.3. Recovery of La, Ce and Nd from spent NiMH batteries 4-41 4.3.1 Spent NMH batteries powder characterization 4-41 4.3.3 Second-stage subcritical water extraction (SWE). 4-51 4.3.4 Selective recovery of REEs via pH adjustment. 4-54 CHAPTER 5 5-1 CONCLUSSIONS AND RECCOMENDATIONS 5-1 5.1 Conclusions 5-1 5.1.1 Recovery of Y and Eu from waste CRT phosphor 5-1 5.1.2 Recovery of Li, Co, and Mn from spent LIBs 5-2 5.1.3 Recovery of La, Ce, and Nd from spent NiMH batteries 5-3 5.2. Recommendations 5-3 REFERENCES R1

Ahn, N.K., Shim, H.W., Kim, D.W., Swain, B., 2020. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy. Waste Manag. 104, 254–261. https://doi.org/10.1016/j.wasman.2020.01.014
Akcil, A., 2016. WEEE : Booming for sustainable recycling. Waste Manag. 57, 1–2. https://doi.org/10.1016/j.wasman.2016.10.014
Al-Harahsheh, M., Kingman, S., Hankins, N., Somerfield, C., Bradshaw, S., Louw, W., 2005. The influence of microwaves on the leaching kinetics of chalcopyrite. Miner. Eng. 18, 1259–1268. https://doi.org/10.1016/j.mineng.2005.06.006
Al-Harahsheh, M., Kingman, S.W., 2004. Microwave-assisted leaching - A review. Hydrometallurgy 73, 189–203. https://doi.org/10.1016/j.hydromet.2003.10.006
Al-Thyabat, S., Nakamura, T., Shibata, E., Iizuka, A., 2013. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review. Miner. Eng. 45, 4–17. https://doi.org/10.1016/j.mineng.2012.12.005
Alvarado-Hernández, L., Lapidus, G.T., González, F., 2019. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands. Waste Manag. 95, 53–58. https://doi.org/10.1016/j.wasman.2019.05.057
Andérez Fernández, M., Rissanen, J., Pérez Nebreda, A., Xu, C., Willför, S., García Serna, J., Salmi, T., Grénman, H., 2018. Hemicelluloses from stone pine, holm oak, and Norway spruce with subcritical water extraction − comparative study with characterization and kinetics. J. Supercrit. Fluids 133, 647–657. https://doi.org/10.1016/j.supflu.2017.07.001
Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., Zhang, H., Gao, Z., Li, J., Liu, G., Dai, J., 2018. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 92, 958–979. https://doi.org/10.1016/j.rser.2018.04.051
Assefi, M., Maroufi, S., Yamauchi, Y., Sahajwalla, V., 2020. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 24, 26–31. https://doi.org/10.1016/j.cogsc.2020.01.005
Ayati, M., Lundager Madsen, H.E., 2001. Solubility product of the cadmium phosphate Cd5H2(PO4)4·4H2O at 37°C. J. Chem. Eng. Data 46, 113–116. https://doi.org/10.1021/je000199v
Baba, A.A., Ayinla, K.I., Adekola, F.A., Bale, R.B., Ghosh, M.K., Alabi, A.G.F., Sheik, A.R., Folorunso, I.O., 2013. Hydrometallurgical application for treating a Nigerian chalcopyrite ore in chloride medium : Part I. Dissolution kinetics assessment. Int. J. Miner. Metall. Mater. 20, 1021–1028. https://doi.org/10.1007/s12613-013-0829-x
Balaram, V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10, 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005
Baldé, C.P., Wang, F., Kuehr, R., Huisman, J., 2017. The Global E-waste Monitor 2017: Quantities, Flows, and Resources. United Nations Univ. 116. https://doi.org/ISBN 978-92-808-4556-3
Barik, S.P., Prabaharan, G., Kumar, L., 2017. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Clean. Prod. 147, 37–43. https://doi.org/10.1016/j.jclepro.2017.01.095
Behera, S.S., Panda, S.K., Das, D., Mohapatra, R.K., Kim, H.I., Lee, J.Y., Jyothi, R.K., Parhi, P.K., 2020. Microwave assisted leaching investigation for the extraction of copper(II) and chromium(III) from spent catalyst. Sep. Purif. Technol. 244, 116842. https://doi.org/10.1016/j.seppur.2020.116842
Bertuol, D.A., Bernardes, A.M., Tenório, J.A.S., 2009. Spent NiMH batteries-The role of selective precipitation in the recovery of valuable metals. J. Power Sources 193, 914–923. https://doi.org/10.1016/j.jpowsour.2009.05.014
Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., Buchert, M., 2013. Recycling of rare earths: A critical review. J. Clean. Prod. 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037
Chagnes, A., 2015. Lithium Battery Technologies: Electrolytes. Electrolytes., Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling. Elsevier Inc. https://doi.org/10.1016/B978-0-12-801417-2.00005-0
Chen, D., Rao, S., Wang, D., Cao, H., Xie, W., Liu, Z., 2020. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- L-ascorbic acid system. Chem. Eng. J. 388, 124321. https://doi.org/10.1016/j.cej.2020.124321
Chen, X., Ma, H., Luo, C., Zhou, T., 2017. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 326, 77–86. https://doi.org/10.1016/j.jhazmat.2016.12.021
Choi, Y., Rhee, S.W., 2020. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of). Waste Manag. 106, 261–270. https://doi.org/10.1016/j.wasman.2020.03.015
Chu, H., Lie, J., Liu, J.C., 2021. Rapid Leaching of Valuable Metals from Spent Lithium-Ion Batteries with Microwave Irradiation Using Organic and Inorganic Acid. J. Sustain. Metall. https://doi.org/10.1007/s40831-021-00362-2
Ciftci, M., Cicek, B., 2017. E-waste: A Review of CRT (Cathode Ray Tube) Recycling. Res. Rev. J. Mater. Sci. 05, 1–17. https://doi.org/10.4172/2321-6212.1000170
Dallinger, D., Kappe, C.O., 2007a. Microwave-assisted synthesis in water as solvent. Chem. Rev. 107, 2563–2591. https://doi.org/10.1021/cr0509410
Dallinger, D., Kappe, C.O., 2007b. Microwave-Assisted Synthesis in Water as Solvent. Chem. Rev. 107, 2563–2591. https://doi.org/10.1021/cr0509410
Damilos, S., Radhakrishnan, A.N.P., Dimitrakis, G., Tang, J., Gavriilidis, A., 2019. Experimental and computational investigation of heat transfer in a microwave-assisted flow system. Chem. Eng. Process. - Process Intensif. 142, 107537. https://doi.org/10.1016/j.cep.2019.107537
Dicinoski, G.W., Gahan, L.R., Lawson, P.J., Rideout, J.A., 2000. Application of the shrinking core model to the kinetics of extraction of gold(I), silver(I) and nickel(II) cyanide complexes by novel anion exchange resins. Hydrometallurgy 56, 323–336. https://doi.org/10.1016/S0304-386X(00)00082-7
Dunn, J.B., Gaines, L., Sullivan, J., Wang, M.Q., 2012. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 46, 12704–12710. https://doi.org/10.1021/es302420z
Dushyantha, N., Batapola, N., Ilankoon, I.M.S.K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Dissanayake, K., 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 122, 103521. https://doi.org/10.1016/j.oregeorev.2020.103521
Eggert, R.G., 2011. Minerals go critical. Nat. Chem. 3, 688–691. https://doi.org/10.1038/nchem.1116
Esmaeili, M., Rastegar, S.O., Beigzadeh, R., Gu, T., 2020. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere 254, 126670. https://doi.org/10.1016/j.chemosphere.2020.126670
European Commission, 2020. Study on the Eu’s list of Critical Raw Materials - Critical Raw Materials Factsheets, Critical Raw Materials Factsheets. https://doi.org/10.2873/92480
Forte, F., Yurramendi, L., Aldana, J.L., Onghena, B., Binnemans, K., 2019. Integrated process for the recovery of yttrium and europium from CRT phosphor waste. RSC Adv. 9, 1378–1386. https://doi.org/10.1039/C8RA08158A
Gao, W., Song, J., Cao, H., Lin, X., Zhang, X., Zheng, X., Zhang, Y., Sun, Z., 2018. Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. J. Clean. Prod. 178, 833–845. https://doi.org/10.1016/j.jclepro.2018.01.040
Garole, D.J., Hossain, R., Garole, V.J., Sahajwalla, V., Nerkar, J., Dubal, D.P., 2020. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 13, 3079–3100. https://doi.org/10.1002/cssc.201903213
Ghosh, A.B., Saha, N., Sarkar, A., Dutta, A.K., Biswas, P., Nag, K., Adhikary, B., 2016. Morphological tuning of Eu2O2S nanoparticles, manifestation of peroxidase-like activity and glucose assay use. New J. Chem. 40, 1595–1604. https://doi.org/10.1039/c5nj02705e
Golmohammadzadeh, R., Rashchi, F., Vahidi, E., 2017. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Manag. 64, 244–254. https://doi.org/10.1016/j.wasman.2017.03.037
Gregory, J.R., Nadeau, M.C., Kirchain, R.E., 2009. Evaluating the economic viability of a material recovery system: The case of cathode ray tube glass. Environ. Sci. Technol. 43, 9245–9251. https://doi.org/10.1021/es901341n
Guan, J., Li, Y., Guo, Y., Su, R., Gao, G., Song, H., Yuan, H., Liang, B., Guo, Z., 2017. Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 5, 1026–1032. https://doi.org/10.1021/acssuschemeng.6b02337
Hariprakash, B., Shukla, A., Venugoplan, S., 2009. SECONDARY BATTERIES – NICKEL SYSTEMS | Nickel–Metal Hydride: Overview, in: Encyclopedia of Electrochemical Power Sources. Elsevier, pp. 494–501. https://doi.org/10.1016/B978-044452745-5.00158-1
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., Anderson, P., 2019. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86. https://doi.org/10.1038/s41586-019-1682-5
He, L.P., Sun, S.Y., Song, X.F., Yu, J.G., 2017. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2cathode of lithium-ion batteries. Waste Manag. 64, 171–181. https://doi.org/10.1016/j.wasman.2017.02.011
Horta Arduin, R., Mathieux, F., Huisman, J., Blengini, G.A., Charbuillet, C., Wagner, M., Baldé, C.P., Perry, N., 2020. Novel indicators to better monitor the collection and recovery of (critical) raw materials in WEEE: Focus on screens. Resour. Conserv. Recycl. 157, 104772. https://doi.org/10.1016/j.resconrec.2020.104772
Hu, A.H., Kuo, C.H., Huang, L.H., Su, C.C., 2017. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor. Waste Manag. 60, 765–774. https://doi.org/10.1016/j.wasman.2016.10.032
Ignasi Puigdomenech, 2010. MEDUSA.
Ikeda, S., Mori, T., Ikeda, Y., Takao, K., 2016. Microwave-Assisted Solvent Extraction of Inert Platinum Group Metals from HNO3(aq) to Betainium-Based Thermomorphic Ionic Liquid. ACS Sustain. Chem. Eng. 4, 2459–2463. https://doi.org/10.1021/acssuschemeng.6b00186
Innocenzi, V., De Michelis, I., Ferella, F., Vegliò, F., 2017a. Leaching of yttrium from cathode ray tube fluorescent powder: Kinetic study and empirical models. Int. J. Miner. Process. 168, 76–86. https://doi.org/10.1016/j.minpro.2017.09.015
Innocenzi, V., Ippolito, N.M., De Michelis, I., Prisciandaro, M., Medici, F., Vegliò, F., 2017b. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J. Power Sources 362, 202–218. https://doi.org/10.1016/j.jpowsour.2017.07.034
Innocenzi, V., Ippolito, N.M., Pietrelli, L., Centofanti, M., Piga, L., Vegliò, F., 2018. Application of solvent extraction operation to recover rare earths from fluorescent lamps. J. Clean. Prod. 172, 2840–2852. https://doi.org/10.1016/j.jclepro.2017.11.129
Ippolito, N.M., Innocenzi, V., De Michelis, I., Medici, F., Vegliò, F., 2017. Rare earth elements recovery from fluorescent lamps: A new thermal pretreatment to improve the efficiency of the hydrometallurgical process. J. Clean. Prod. 153, 287–298. https://doi.org/10.1016/j.jclepro.2017.03.195
Jacoby, M., 2019. It’s time to get serious about recycling lithium-ion batteries. Chem. Eng. News volume 97, issue 28.
Joulié, M., Laucournet, R., Billy, E., 2014. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 247, 551–555. https://doi.org/10.1016/j.jpowsour.2013.08.128
Kala, H.K., Mehta, R., Sen, K.K., Tandey, R., Mandal, V., 2016. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC - Trends Anal. Chem. 85, 140–152. https://doi.org/10.1016/j.trac.2016.09.007
Ko, M.J., Kwon, H.L., Chung, M.S., 2016. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 38, 175–181. https://doi.org/10.1016/j.ifset.2016.10.008
Korkmaz, K., Alemrajabi, M., Rasmuson, Å.C., Forsberg, K.M., 2020. Separation of valuable elements from NiMH battery leach liquor via antisolvent precipitation. Sep. Purif. Technol. 234. https://doi.org/10.1016/j.seppur.2019.115812
Kumar N, S., Grekov, D., Pré, P., Alappat, B.J., 2020. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview. Renew. Sustain. Energy Rev. 124. https://doi.org/10.1016/j.rser.2020.109743
Larsson, K., Ekberg, C., Ødegaard-Jensen, A., 2013. Dissolution and characterization of HEV NiMH batteries. Waste Manag. 33, 689–698. https://doi.org/10.1016/j.wasman.2012.06.001
Lavric, V., 2013. Process Design, Integration and Optimisation: Advantages, Challenges and Drivers, Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097255.1.79
Lee, Jaeryeong, Kim, S., Kim, B., Lee, Jae-chun, 2018. Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS). Metals (Basel). 8, 1–9. https://doi.org/10.3390/met8030150
Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., Wu, F., Chen, R., 2017. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng. 5, 5224–5233. https://doi.org/10.1021/acssuschemeng.7b00571
Li, L., Lu, J., Ren, Y., Zhang, X.X., Chen, R.J., Wu, F., Amine, K., 2012. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. Power Sources 218, 21–27. https://doi.org/10.1016/j.jpowsour.2012.06.068
Liang, Y., Zhao, C., Yuan, H., Chen, Y., Zhang, W., Huang, J., Yu, D., Liu, Y., Titirici, M., Chueh, Y., Yu, H., Zhang, Q., 2019. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32. https://doi.org/10.1002/inf2.12000
Liddell, K.C., 2005. Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation. Hydrometallurgy 79, 62–68. https://doi.org/10.1016/j.hydromet.2003.07.011
Lie, J., Ismadji, S., Liu, J.C., 2019. Microwave-assisted leaching of rare earth elements (Y and Eu) from waste cathode ray tube phosphor. J. Chem. Technol. Biotechnol. 94, 3859–3865. https://doi.org/10.1002/jctb.6184
Lie, J., Tanda, S., Liu, J.C., 2020. Subcritical water extraction of valuable metals from spent lithium-ion batteries. Molecules 25, 1–12. https://doi.org/10.3390/molecules25092166
Lin, E.Y., Rahmawati, A., Ko, J.H., Liu, J.C., 2018. Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water. Sep. Purif. Technol. 192, 166–175. https://doi.org/10.1016/j.seppur.2017.10.004
Lin, S., Li, K., Yang, Y., Gao, L., Omran, M., Guo, S., Chen, J., Chen, G., 2021. Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent. Chem. Eng. Process. - Process Intensif. 159, 108209. https://doi.org/10.1016/j.cep.2020.108209
Liu, C., Deng, Y., Chen, J., Zou, D., Su, W., 2017. Integrated Process to Recover NiMH Battery Anode Alloy with Selective Leaching and Multistage Extraction. Ind. Eng. Chem. Res. 56, 7551–7558. https://doi.org/10.1021/acs.iecr.7b01427
Liu, C., Gao, J., Liu, T., Zhang, L., Miller, J.D., 2019. Dielectric properties and microwave heating characteristics of Huimin siderite ore. J. Microw. Power Electromagn. Energy 53, 128–141. https://doi.org/10.1080/08327823.2019.1607492
Liu, F., Peng, C., Porvali, A., Wang, Z., Wilson, B.P., Lundström, M., 2019. Synergistic Recovery of Valuable Metals from Spent Nickel-Metal Hydride Batteries and Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 7, 16103–16111. https://doi.org/10.1021/acssuschemeng.9b02863
Liu, K., Zhang, F.S., 2016. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. J. Hazard. Mater. 316, 19–25. https://doi.org/10.1016/j.jhazmat.2016.04.080
Liu, T., Chen, J., Li, H., Li, K., 2020. An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials. Sep. Purif. Technol. 245, 116869. https://doi.org/10.1016/j.seppur.2020.116869
Lokshin, E.P., Tareeva, O.A., Ivlev, K.G., Kashulina, T.G., 2005. Solubility of double alkali metal (Na, K) rare-earth (La, Ce) sulfates in sulfuric-phosphoric acid solutions at 20°C. Russ. J. Appl. Chem. 78, 1058–1063. https://doi.org/10.1007/s11167-005-0449-y
Lokshin, E.P., Tareeva, O.A., Kashulina, T.G., 2007. A study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20°C. Russ. J. Appl. Chem. 80, 1275–1280. https://doi.org/10.1134/S1070427207080022
Lorentzen, E.M.L., Kingston, H.M., 1996. Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Anal. Chem. 68, 4316–4320. https://doi.org/10.1021/ac960553l
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z., 2018a. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 6, 1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z., 2018b. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811
Madakkaruppan, V., Pius, A., Sreenivas, T., Giri, N., Sarbajna, C., 2016. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. J. Hazard. Mater. 313, 9–17. https://doi.org/10.1016/j.jhazmat.2016.03.050
Mairizal, A.Q., Sembada, A.Y., Tse, K.M., Rhamdhani, M.A., 2021. Electronic waste generation, economic values, distribution map, and possible recycling system in Indonesia. J. Clean. Prod. 293, 126096. https://doi.org/10.1016/j.jclepro.2021.126096
Martín, Á., Navarrete, A., 2018. Microwave-assisted process intensification techniques. Curr. Opin. Green Sustain. Chem. 11, 70–75. https://doi.org/10.1016/j.cogsc.2018.04.019
Mello, P.A., Barin, J.S., Guarnieri, R.A., 2014. Microwave heating, in: Microwave-Assisted Sample Preparation for Trace Element Analysis. Elsevier, pp. 59–75. https://doi.org/10.1016/B978-0-444-59420-4.00002-7
Meshram, P., Abhilash, Pandey, B.D., 2019. Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Miner. Process. Extr. Metall. Rev. 40, 157–193. https://doi.org/10.1080/08827508.2018.1514300
Meshram, P., Mishra, A., Abhilash, Sahu, R., 2020. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review. Chemosphere 242, 125291. https://doi.org/10.1016/j.chemosphere.2019.125291
Meshram, P., Pandey, B.D., Mankhand, T.R., 2015a. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 281, 418–427. https://doi.org/10.1016/j.cej.2015.06.071
Meshram, P., Pandey, B.D., Mankhand, T.R., 2015b. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Manag. 45, 306–313. https://doi.org/10.1016/j.wasman.2015.05.027
Meshram, P., Somani, H., Pandey, B.D., Mankhand, T.R., Deveci, H., Abhilash, 2017. Two stage leaching process for selective metal extraction from spent nickel metal hydride batteries. J. Clean. Prod. 157, 322–332. https://doi.org/10.1016/j.jclepro.2017.04.144
Miskufova, A., Kochmanova, A., Havlik, T., Horvathova, H., Kuruc, P., 2018. Leaching of yttrium, europium and accompanying elements from phosphor coatings. Hydrometallurgy 176, 216–228. https://doi.org/10.1016/j.hydromet.2018.01.010
Möller, M., Nilges, P., Harnisch, F., Schröder, U., 2011. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem 4, 566–579. https://doi.org/10.1002/cssc.201000341
Mossali, E., Picone, N., Gentilini, L., Rodrìguez, O., Pérez, J.M., Colledani, M., 2020. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manage. 264. https://doi.org/10.1016/j.jenvman.2020.110500
Nitta, N., Wu, F., Lee, J.T., Yushin, G., 2015. Li-ion battery materials: Present and future. Mater. Today 18, 252–264. https://doi.org/10.1016/j.mattod.2014.10.040
Nshizirungu, T., Agarwal, A., Jo, Y.T., Rana, M., Shin, D., Park, J.H., 2020a. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. J. Hazard. Mater. 393, 122367. https://doi.org/10.1016/j.jhazmat.2020.122367
Nshizirungu, T., Agarwal, A., Jo, Y.T., Rana, M., Shin, D., Park, J.H., 2020b. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. J. Hazard. Mater. 393, 122367. https://doi.org/10.1016/j.jhazmat.2020.122367
Nshizirungu, T., Rana, M., Jo, Y.T., Park, J.H., 2020c. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride. J. Hazard. Mater. 396, 122667. https://doi.org/10.1016/j.jhazmat.2020.122667
Önal, M.A.R., Binnemans, K., 2019. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder by selective sulfation roasting and water leaching. Hydrometallurgy 183, 60–70. https://doi.org/10.1016/j.hydromet.2018.11.005
Ordoñez, J., Gago, E.J., Girard, A., 2016. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 60, 195–205. https://doi.org/10.1016/j.rser.2015.12.363
Patil, D., Chikkamath, S., Keny, S., Tripathi, V., Manjanna, J., 2020. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation. J. Environ. Manage. 256, 109935. https://doi.org/10.1016/j.jenvman.2019.109935
Pavón, S., Fortuny, A., Coll, M.T., Sastre, A.M., 2018. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Waste Manag. 82, 241–248. https://doi.org/10.1016/j.wasman.2018.10.027
Peng, C., Hamuyuni, J., Wilson, B.P., Lundström, M., 2018. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Waste Manag. 76, 582–590. https://doi.org/10.1016/j.wasman.2018.02.052
Peng, Z., Hwang, J.-Y., 2015. Microwave-assisted metallurgy. Int. Mater. Rev. 60, 30–63. https://doi.org/10.1179/1743280414Y.0000000042
Petranikova, M., Ebin, B., Tunsu, C., 2019. Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301. Waste Manag. 83, 194–201. https://doi.org/10.1016/j.wasman.2018.11.022
Pietrelli, L., Bellomo, B., Fontana, D., Montereali, M.R., 2002. Rare earths recovery from NiMH spent batteries. Hydrometallurgy 66, 135–139. https://doi.org/10.1016/S0304-386X(02)00107-X
Pindar, S., Dhawan, N., 2020. Recycling of mixed discarded lithium-ion batteries via microwave processing route. Sustain. Mater. Technol. 25, e00157. https://doi.org/10.1016/j.susmat.2020.e00157
Pinegar, H., Smith, Y.R., 2019. Recycling of End-of-Life Lithium Ion Batteries, Part I: Commercial Processes. J. Sustain. Metall. 5, 402–416. https://doi.org/10.1007/s40831-019-00235-9
Pinto, I.S.S., Soares, H.M.V.M., 2012. Selective leaching of molybdenum from spent hydrodesulphurisation catalysts using ultrasound and microwave methods. Hydrometallurgy 129–130, 19–25. https://doi.org/10.1016/j.hydromet.2012.08.008
Plaza, M., Turner, C., 2015. Pressurized hot water extraction of bioactives. TrAC - Trends Anal. Chem. 71, 39–54. https://doi.org/10.1016/j.trac.2015.02.022
Porvali, A., Agarwal, V., Lundström, M., 2020. REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation. Waste Manag. 107, 66–73. https://doi.org/10.1016/j.wasman.2020.03.042
Porvali, Antti, Ojanen, S., Wilson, B.P., Serna-Guerrero, R., Lundström, M., 2020. Nickel Metal Hydride Battery Waste: Mechano-hydrometallurgical Experimental Study on Recycling Aspects. J. Sustain. Metall. 6, 78–90. https://doi.org/10.1007/s40831-019-00258-2
Porvali, A., Wilson, B.P., Lundström, M., 2018. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate. Waste Manag. 71, 381–389. https://doi.org/10.1016/j.wasman.2017.10.031
Pradhan, D., Panda, S., Sukla, L.B., 2018. Recent advances in indium metallurgy: A review. Miner. Process. Extr. Metall. Rev. 39, 167–180. https://doi.org/10.1080/08827508.2017.1399887
Qi, Y., Xiao, X., Lu, Y., Shu, J., Wang, J., Chen, M., 2019. Cathode ray tubes glass recycling: A review. Sci. Total Environ. 650, 2842–2849. https://doi.org/10.1016/j.scitotenv.2018.09.383
Quijada-Maldonado, E., Romero, J., 2021. Solvent extraction of rare-earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements. Curr. Opin. Green Sustain. Chem. 27, 100428. https://doi.org/10.1016/j.cogsc.2020.100428
Rabah, M.A., 2008. Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Manag. 28, 318–325. https://doi.org/10.1016/j.wasman.2007.02.006
Rahimi, G., Rastegar, S.O., Rahmani Chianeh, F., Gu, T., 2020. Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids. RSC Adv. 10, 1685–1696. https://doi.org/10.1039/C9RA09325G
Rahmawati, A., Kuncoro, K.A., Ismadji, S., Liu, J.C., 2020. Subcritical water extraction of indium from indium tin oxide scrap using organic acid solutions. Environ. Chem. 17, 158–162. https://doi.org/10.1071/EN19233
Resende, L. V., Morais, C.A., 2015. Process development for the recovery of europium and yttrium from computer monitor screens. Miner. Eng. 70, 217–221. https://doi.org/10.1016/j.mineng.2014.09.016
Rinne, M., Elomaa, H., Porvali, A., Lundström, M., 2021. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste. Resour. Conserv. Recycl. 170. https://doi.org/10.1016/j.resconrec.2021.105586
Rodrigues, L.E.O.C., Mansur, M.B., 2010. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries. J. Power Sources 195, 3735–3741. https://doi.org/10.1016/j.jpowsour.2009.12.071
Rollat, A., Guyonnet, D., Planchon, M., Tuduri, J., 2020. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon. Waste Manag. 49, 427–436. https://doi.org/10.1016/j.wasman.2016.01.011
Santos, M.P., Souza, M.C., Sumere, B.R., da Silva, L.C., Cunha, D.T., Bezerra, R.M.N., Rostagno, M.A., 2019. Extraction of bioactive compounds from pomegranate peel (Punica granatum L.) with pressurized liquids assisted by ultrasound combined with an expansion gas. Ultrason. Sonochem. 54, 11–17. https://doi.org/10.1016/j.ultsonch.2019.02.021
Saravana, P.S., Chun, B.S., 2017. Seaweed Polysaccharide Isolation Using Subcritical Water Hydrolysis, Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809816-5.00004-9
Schaeffer, N., Passos, H., Billard, I., Papaiconomou, N., Coutinho, J.A.P., 2018. Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids. Crit. Rev. Environ. Sci. Technol. 48, 859–922. https://doi.org/10.1080/10643389.2018.1477417
Sethurajan, M., van Hullebusch, E.D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., Leal, J.P., Gasche, T.A., Ali Kucuker, M., Kuchta, K., Neto, I.F.F., Soares, H.M.V.M., Chmielarz, A., 2019. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review. Crit. Rev. Environ. Sci. Technol. 49, 212–275. https://doi.org/10.1080/10643389.2018.1540760
Shih, Y.J., Chien, S.K., Jhang, S.R., Lin, Y.C., 2019. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. J. Taiwan Inst. Chem. Eng. 100, 151–159. https://doi.org/10.1016/j.jtice.2019.04.017
Shimizu, R., Sawada, K., Enokida, Y., Yamamoto, I., 2005. Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps. J. Supercrit. Fluids 33, 235–241. https://doi.org/10.1016/j.supflu.2004.08.004
Singh, N., Wang, J., Li, J., 2016. Waste Cathode Rays Tube: An Assessment of Global Demand for Processing. Procedia Environ. Sci. 31, 465–474. https://doi.org/10.1016/j.proenv.2016.02.050
Sun, J., Wang, W., Yue, Q., 2016. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials (Basel). 9. https://doi.org/10.3390/ma9040231
Sun, Z., Cao, H., Zhang, X., Lin, X., Zheng, W., Cao, G., Sun, Y., Zhang, Y., 2017. Spent lead-acid battery recycling in China – A review and sustainable analyses on mass flow of lead. Waste Manag. 64, 190–201. https://doi.org/10.1016/j.wasman.2017.03.007
Swain, B., 2017. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 172, 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
Szubert, A., Lupinski, M., Sadowski, Z., 2006. Application of Shrinking Core Model To Bioleaching of Black Shale Particles. Physicochem. Probl. Miner. Process. 40, 211–225. https://doi.org/10.4311/2014ES0106
Takacova, Z., Havlik, T., Kukurugya, F., Orac, D., 2016. Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy 163, 9–17. https://doi.org/10.1016/j.hydromet.2016.03.007
Tan, Q., Li, J., Zeng, X., 2015. Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review. Crit. Rev. Environ. Sci. Technol. 45, 749–776. https://doi.org/10.1080/10643389.2014.900240
Tavakoli, O., Yoshida, H., 2005. Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environ. Sci. Technol. 39, 2357–2363. https://doi.org/10.1021/es030713s
Tesfaye, F., Lindberg, D., Hamuyuni, J., Taskinen, P., Hupa, L., 2017. Improving urban mining practices for optimal recovery of resources from e-waste. Miner. Eng. 111, 209–221. https://doi.org/10.1016/j.mineng.2017.06.018
Tian, X., Yin, X., gong, Y., Wu, Y., Tan, Z., Xu, P., 2016. Characterization, recovery potentiality, and evaluation on recycling major metals from waste cathode-ray tube phosphor powder by using sulphuric acid leaching. J. Clean. Prod. 135, 1210–1217. https://doi.org/10.1016/j.jclepro.2016.07.044
Tian, Y., Demirel, S.E., Hasan, M.M.F., Pistikopoulos, E.N., 2018. An overview of process systems engineering approaches for process intensification: State of the art. Chem. Eng. Process. - Process Intensif. 133, 160–210. https://doi.org/10.1016/j.cep.2018.07.014
Tunsu, C., Petranikova, M., Ekberg, C., Retegan, T., 2016. A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep. Purif. Technol. 161, 172–186. https://doi.org/10.1016/j.seppur.2016.01.048
Tunsu, C., Petranikova, M., Gergorić, M., Ekberg, C., Retegan, T., 2015. Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156, 239–258. https://doi.org/10.1016/j.hydromet.2015.06.007
U.S. Geological Survey, 2019. Mineral Commodity Summaries, Mineral commodity summaries 2019: U.S. Geological Survey. https://doi.org/https://doi.org/10.3133/70202434
Uçar, G., 2009. Hydrometallurgy Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid. Hydrometallurgy 95, 39–43. https://doi.org/10.1016/j.hydromet.2008.04.008
US Geological Survey, 2018. Mineral Commodity Study 2018 98–99. https://doi.org/10.3133/70194932
Wang, G., Huang, B., Li, Z., Lou, Z., Wang, Z., Dai, Y., Whangbo, M.H., 2015. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep08544
Wang, M., Tan, Q., Chiang, J.F., Li, J., 2017. Recovery of rare and precious metals from urban mines—A review. Front. Environ. Sci. Eng. 11, 1–17. https://doi.org/10.1007/s11783-017-0963-1
Watari, T., 2020. Resources , Conservation & Recycling Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669. https://doi.org/10.1016/j.resconrec.2019.104669
Wells, A.F., 1975. Structural Inorganic Chemistry, 4th ed. Clarendon Press - Oxford, London.
Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., Song, S., 2017. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results Phys. 7, 2594–2600. https://doi.org/10.1016/j.rinp.2017.07.035
Woo, S.H., Lee, D.S., Lim, S.R., 2016. Potential resource and toxicity impacts from metals in waste electronic devices. Integr. Environ. Assess. Manag. 12, 364–370. https://doi.org/10.1002/ieam.1710
Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., Zhang, L., 2018. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chem. Eng. J. 335, 774–800. https://doi.org/10.1016/j.cej.2017.10.143
Xiaokui, C., Xiuzhu, S., Ru’An, C., Junxia, Y., 2010. Microwave assisted atmospheric acid leaching of nickel from laterite ore. Rare Met. 29, 327–332. https://doi.org/10.1007/s12598-010-0058-7
Yang, X., Zhang, J., Fang, X., 2014. Rare earth element recycling from waste nickel-metal hydride batteries. J. Hazard. Mater. 279, 384–388. https://doi.org/10.1016/j.jhazmat.2014.07.027
Yao, Y., Farac, N.F., Azimi, G., 2018. Supercritical Fluid Extraction of Rare Earth Elements from Nickel Metal Hydride Battery. ACS Sustain. Chem. Eng. 6, 1417–1426. https://doi.org/10.1021/acssuschemeng.7b03803
Yin, X., Tian, X., Wu, Y., Zhang, Q., Wang, W., Li, B., Gong, Y., Zuo, T., 2018a. Recycling rare earth elements from waste cathode ray tube phosphors: Experimental study and mechanism analysis. J. Clean. Prod. 205, 58–66. https://doi.org/10.1016/j.jclepro.2018.09.055
Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y.N., Zuo, T., 2016a. Green Recovery of Rare Earths from Waste Cathode Ray Tube Phosphors: Oxidative Leaching and Kinetic Aspects. ACS Sustain. Chem. Eng. 4, 7080–7089. https://doi.org/10.1021/acssuschemeng.6b01965
Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y.N., Zuo, T., 2016b. Green Recovery of Rare Earths from Waste Cathode Ray Tube Phosphors: Oxidative Leaching and Kinetic Aspects. ACS Sustain. Chem. Eng. 4, 7080–7089. https://doi.org/10.1021/acssuschemeng.6b01965
Yin, X., Yu, J., Wu, Y., Tian, X., Wang, W., Zhang, Y.N., Zuo, T., 2018b. Reclamation and Harmless Treatment of Waste Cathode Ray Tube Phosphors: Novel and Sustainable Design. ACS Sustain. Chem. Eng. 6, 4321–4329. https://doi.org/10.1021/acssuschemeng.7b04796
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Asghari, F.S., 2015. Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water. J. Supercrit. Fluids 104, 40–48. https://doi.org/10.1016/j.supflu.2015.05.016
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Asghari Feridoun, S., 2014. Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water. Sol. Energy Mater. Sol. Cells 125, 14–19. https://doi.org/10.1016/j.solmat.2014.02.009
Zeng, X., Li, J., Singh, N., 2014. Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 44, 1129–1165. https://doi.org/10.1080/10643389.2013.763578
Zeng, X., Mathews, J.A., Li, J., 2018a. Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b04909
Zeng, X., Mathews, J.A., Li, J., 2018b. Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b04909
Zhang, J., Wen, C., Zhang, H., Duan, Y., Ma, H., 2020. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 95, 183–195. https://doi.org/10.1016/j.tifs.2019.11.018
Zhang, K., Li, B., Wu, Y., Wang, W., Li, R., Zhang, Y.N., Zuo, T., 2017. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Manag. 64, 236–243. https://doi.org/10.1016/j.wasman.2017.03.031
Zhang, Y.-Z., Zhao, J., Xia, J., Wang, L., Lai, W.-Y., Pang, H., Huang, W., 2015. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. Sci. Rep. 5, 8536. https://doi.org/10.1038/srep08536
Zhang, Y., Chu, W., Chen, X., Wang, M., Cui, H., Wang, J., 2019. Recovery of rare earth metals and synthesis of Ni0.6Co0.2Mn0.2(OH)2 from spent asymmetric-capacitance power batteries. J. Clean. Prod. 235, 1295–1303. https://doi.org/10.1016/j.jclepro.2019.07.072
Zhao, S., Zhang, W., Li, G., Zhu, H., Huang, J., He, W., 2020. Ultrasonic renovation mechanism of spent LCO batteries: A mild condition for cathode materials recycling. Resour. Conserv. Recycl. 162, 105019. https://doi.org/10.1016/j.resconrec.2020.105019
Zheng, Q., Shibazaki, K., Ogawa, T., Kishita, A., Hiraga, Y., Nakayasu, Y., Watanabe, M., 2020. Continuous hydrothermal leaching of LiCoO 2 cathode materials by using citric acid . React. Chem. Eng. https://doi.org/10.1039/d0re00286k
Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., Sun, Z., 2018. A mini-review on metal recycling from spent lithium ion batteries. Engineering 4, 361–370. https://doi.org/10.1016/j.eng.2018.05.018
Zielinski, M., Cassayre, L., Destrac, P., Coppey, N., Garin, G., Biscans, B., 2020. Leaching Mechanisms of Industrial Powders of Spent Nickel Metal Hydride Batteries in a Pilot-Scale Reactor. ChemSusChem 13, 616–628. https://doi.org/10.1002/cssc.201902640
Zubi, G., Dufo-López, R., Carvalho, M., Pasaoglu, G., 2018. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308. https://doi.org/10.1016/j.rser.2018.03.002
Zuo, L., Wang, C., Corder, G.D., 2019. Strategic evaluation of recycling high-tech metals from urban mines in China: An emerging industrial perspective. J. Clean. Prod. 208, 697–708. https://doi.org/10.1016/j.jclepro.2018.10.030

QR CODE