簡易檢索 / 詳目顯示

研究生: 蘇偉誌
Wei-Jhih - Su
論文名稱: 石墨烯與過渡金屬硫屬化物材料的特性和應用之研究
Study on Characteristics and Applications of Graphene and Transition Metal Dichalcogenide Materials
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 邱博文
Po-Wen Chiu
施文欽
Wen-Ching Shih
杭大任
Da-Ren Hang
何清華
Ching-Hwa Ho
趙良君
Liang-Chiun Chao 
蘇忠傑
Jung-Chieh Su
陳瑞山
Ruei-San Chen
林保宏
Pao-hung Lin 
學位類別: 博士
Doctor
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 130
中文關鍵詞: 石墨烯過渡金屬硫屬化合物化學氣相沉積法化學氣相傳導法場效應電晶體光感測器異質接面二極體
外文關鍵詞: Graphene, Mo1-xWxS2, Chemical vapor deposition, Chemical vapor transport, Field effect transistor, Photodetector, Heterojunction diode
相關次數: 點閱:679下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用氧氣吸附於石墨烯表面造成其內部之載子濃度改變來獲得p型半導體特性的石墨烯。實驗中,利用熱化學氣相沉積法製作石墨烯,並利用氮電漿對石墨稀進行摻雜,以C-N的鍵結讓石墨烯的半導體特性由p型轉變為n型。氮電漿處理是一個能有效調變石墨烯半導體特性的方法。在石墨烯電晶體的電壓-電流特性曲線量測中以迪拉克點(電壓-電流曲線中的最低點)為分界可觀察到電子與電洞的工作區。經過不同的氮電漿處理時間可以調整石墨烯中的載子比例進而控制其半導體特性。未摻雜之p型石墨烯其電壓-電流特性曲線由電洞主導;而隨著氮含量上升,其電壓-電流曲線中的最低點逐漸位移至-38 V,而電子濃度則大於電洞濃度。本論文除了成功地對於石墨烯進行半導體特性改質,也將p型石墨烯與n型的二硫化鉬結合,製作異質接面二極體。二硫化鉬的能帶結構會隨著材料的厚度降低造成能隙上升。透過控制二硫化鉬厚度進行材料能隙調變,因此與石墨烯結合製作而成的二極體元件會具有不同的開啟電壓。由二極體特性曲線量測可發現到元件因為二硫化鉬能隙的調變具有不同的內建障壁電位。研究中亦針對二硫化鉬的半導體特性與能帶結構的分析進行深入討論。利用Mo1-xWxS2化學式對二硫化鉬中進行鎢原子摻雜,利用此材料特殊的能帶結構並製作光偵測元件,探討能帶彎曲特性與光響應度之間的關係。最後結合p型半導體特性的石墨烯與Mo1-xWxS2在不同的鉬鎢比例下(x = 0-1, Δx = 0.1)造成的能帶彎曲效應製作異質接面二極體。在特性曲線量測上發現元件在不同的鎢含量下呈現不同的內建障壁電位。Mo1-xWxS2的電子親和力隨著鎢含量增加而降低,由此結果我們可以得到一個新的元件設計架構與應用。


In this thesis, we could precisely confirm the semiconducting type of graphene by the changing of interior carrier concentration and resistivity when O2 gas adsorbed onto graphene surface. Multilayer graphene was directly grown onto Cu foils using thermal chemical vapor deposition (TCVD). The nitrogen plasma treatment was used to introduce nitrogen atoms into the graphene. The plasma treatment duration was the parameter used to control the multilayer graphene nitrogen content. In the semiconductor materials analysis we confirm whether the multilayer graphene is p- or n-type by measuring the Dirac point (minimum in I-V characteristic) of graphene-based field effect transistors (GFETs). Generally, the nitrogen content increased with the increase in nitrogen plasma treatment time. On the contrary, the current of the n-type graphene will decrease while the electrons, the main carriers, are captured by the O2 molecules on the surface resulting in the reduction of the electron concentration. Moreover, we measured the Dirac point of GFETs to confirm whether the graphene is p- or n-type. As the nitrogen content of graphene increased, the Dirac point shifts negatively to -38 V, which means that the electron concentration is larger than the hole concentration. Besides, the MoS2 layers were formed by the mechanical exfoliation method. The MoS2 band-gap increases with decreasing thickness. The I-V characteristics of the MoS2/Graphene heterojunction diodes can be precisely tuned by adjusting different thicknesses of the MoS2 films. By applying our fabricating method, MoS2/Graphene heterojunction diode can be easily constructed and have potential to different applications. On the other hand, we investigated the photoconductive characteristics of tungsten-substituted molybdenum disulfide (Mo1-xWxS2) series materials synthesized by the chemical vapor transport (CVT) method using different x values of W compositions (x = 0-1, Δx = 0.1). We applied the Mo1-xWxS2 series materials to photoconductive detectors and then measured the photoresponse properties. In the two-dimensional component design and application, the Mo1-xWxS2 electron affinity decreases with increasing x value of tungsten (W) composition (x = 0.0-1.0, Δx = 0.2). The I-V characteristics of the Mo1-xWxS2/graphene heterojunction diodes can be accurately tuned by conduction band bowing effect with different W composition of the Mo1-xWxS2 films. By applying our fabricating method, the Mo1-xWxS2 with different W composition provides a new application of semiconductor device.

Abstract-----------------------------------------------------------------------------I Acknowledgement----------------------------------------------------------------------V Contents-----------------------------------------------------------------------------VI Figure Captions----------------------------------------------------------------------X Table Captions-----------------------------------------------------------------------XVIII Chapter 1 Introduction---------------------------------------------------------------1 1.1 Graphene-------------------------------------------------------------------------2 1.1.1 History of Graphene------------------------------------------------------------2 1.1.2 Crystal Structure--------------------------------------------------------------3 1.1.3 Raman Spectroscopy ------------------------------------------------------------5 1.1.4 Formation Method --------------------------------------------------------------6 1.1.5 Substitutional Doping ---------------------------------------------------------8 1.2 Transition Metal Dichalcogenides ------------------------------------------------11 1.2.1 Background --------------------------------------------------------------------11 1.2.2 Molybdenum Disulfide ----------------------------------------------------------12 1.2.3 Tungsten-Substituted Molybdenum Disulfide -------------------------------------13 1.2.4 Raman Spectroscopy-------------------------------------------------------------13 1.2.5 Formation Method --------------------------------------------------------------16 1.2.6 Band Gap Bowing Effect---------------------------------------------------------18 1.3 Applications --------------------------------------------------------------------20 1.3.1 Field-Effect Transistor--------------------------------------------------------20 1.3.2 Operation ---------------------------------------------------------------------21 1.3.3 Graphene-Based FET ------------------------------------------------------------22 1.3.4 Top-Gate FET Structure---------------------------------------------------------23 1.3.5 Photodetector -----------------------------------------------------------------24 1.3.6 The Junction Diode ------------------------------------------------------------25 1.3.7 Operation ---------------------------------------------------------------------26 1.3.8 Heterojunction Diode ----------------------------------------------------------27 1.3.9 Graphene and TMDs Heterojunction Diode Structure ------------------------------29 Chapter 2 Experimental Methodology---------------------------------------------------30 2.1 Experimental Procedure Flow Chart ---------------------------------------------30 2.2 Manufacturing Procedure -------------------------------------------------------31 2.2.1 Synthesis of Graphene by TCVD -------------------------------------------------31 2.2.2 Graphene Transfer -------------------------------------------------------------33 2.2.3 Synthesis of Nitrogen-Doped Graphene by Nitrogen Plasma Treatment ---------------------------------------------------------------------35 2.2.4 Photolithology Process and Defines the Channel Size ---------------------------36 2.2.5 Electron Beam Evaporator ------------------------------------------------------38 2.3 Synthesis of TMDs material by CVT Process ---------------------------------------40 2.3.1 The MoS2 Single Crystals Growth------------------------------------------------40 2.3.2 The Mo1-xWxS2 Single Crystals Growth ------------------------------------------42 2.3.3 TMDs Film Preparation and Transfer --------------------------------------------43 2.3.4 Fabricated Heterojunction Diode -----------------------------------------------44 2.3.5 Fabricated Mo1-xWxS2 Photodetector --------------------------------------------45 2.4 Characterization Techniques------------------------------------------------------46 2.4.1 High-Resolution Transmission Electron Microscope (JEOL 2000FXII)---------------46 2.4.2 Scanning Electron Microscope (HITACHI S-3000H)---------------------------------47 2.4.3 X-Ray Photoelectron Spectroscope (VG ESCA Scientific Theta Probe)-------------48 2.4.4 Raman Spectroscope (RENISHAW inVia)--------------------------------------------49 2.4.5 Atomic Force Microscope--------------------------------------------------------49 2.4.6 Electrical Characteristics Measurement ----------------------------------------50 2.4.7 Current-voltage characteristics measurement -----------------------------------52 2.4.8 Photoconductivity Measurement -------------------------------------------------53 Chapter 3 Nitrogen Plasma-treated Multilayer Graphene-based Field Effect Transistor Fabrication and Electronic Characteristics ------------------------------------------55 3.1 Experimental Procedure-----------------------------------------------------------56 3.2 TEM Image of Graphene -----------------------------------------------------------58 3.3 Raman Analysis of Graphene and N-doped Graphene ---------------------------------59 3.4 X-Ray Photoelectron Spectroscopy Analysis of Graphene and N-doped Graphene ------61 3.5 Analysis of GFET Characteristics ------------------------------------------------65 3.6 Summary--------------------------------------------------------------------------67 Chapter 4 Two Dimensional MoS2/graphene p-n Heterojunction Diode: Fabrication and Electronic Characteristics ----------------------------------------------------------68 4.1 Experimental Procedure-----------------------------------------------------------69 4.2 AFM Images of Molybdenum Disulfide Thickness ------------------------------------70 4.3 Thickness Dependent Raman Analysis of MoS2 --------------------------------------72 4.4 Material Structure and Semiconductor Properties of Graphene ---------------------73 4.5 Heterojunction Diode Characterization of MoS2/Graphene --------------------------75 4.6 Band Structure of Heterojunction Diodes -----------------------------------------77 4.7 Summary--------------------------------------------------------------------------78 Chapter 5 Mo1-xWxS2 Photodetector Fabrication and Photoconductive Characteristics ---79 5.1 Experimental Procedure-----------------------------------------------------------80 5.2 X-Ray Photoelectron Spectroscopy Analysis of Mo1-xWxS2---------------------------82 5.3 SEM Images of The Exfoliated Mo1-xWxS2 ------------------------------------------85 5.4 Raman Analysis of Mo1-xWxS2 -----------------------------------------------------87 5.5 Structure Dependence and Absorbance of Normalized A1g peaks ---------------------88 5.6 Photoconductivity measurement ---------------------------------------------------91 5.6.1 Photothermal Effect of Laser Excitation ------------------------------------91 5.6.2 Electrical Characteristics Between The Electrode and The Material ----------91 5.6.3 Effect of Absorbance and Bowing Effect on Photoconductivity ----------------93 5.7 Summary--------------------------------------------------------------------------96 Chapter 6 Fabrication and Current-Voltage Characteristics of Mo1-xWxS2/Graphene Oxide Heterojunction Diode ----------------------------------------------------------------97 6.1 Experimental Procedure-----------------------------------------------------------98 6.2 X-Ray Photoelectron Spectroscopy Analysis of Mo1-xWxS2 --------------------------100 6.3 SEM Images of The Exfoliated Mo1-xWxS2 ------------------------------------------102 6.4 Material Structure of Graphene Oxide --------------------------------------------103 6.5 Semiconductor Properties of Graphene Oxide --------------------------------------105 6.6 Heterojunction Diode Characterization of Graphene Oxide /Mo1-xWxS2 --------------107 6.7 Band Structure of Heterojunction Diodes -----------------------------------------108 6.8 Summary -------------------------------------------------------------------------111 Chapter 7 Conclusions----------------------------------------------------------------112 Publication List---------------------------------------------------------------------116 References---------------------------------------------------------------------------119

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[3] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, pp. 1530-1534, 2009.
[4] A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale, vol. 6, pp. 10927-10940, 2014.
[5] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater., vol. 6, pp. 652-655, 2007.
[6] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, pp. 201-204, 2005.
[7] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum hall effect in graphene,” Science, vol. 315, p. 1379, 2009.
[8] Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaic devices based on a novel acceptor material: graphene,” Adv. Mater., vol. 20, pp. 3924-3930, 2008.
[9] E. W. Hill, A. Vijayaragahvan, and K. S. Novoselov, “Graphene sensors,” IEEE Sens. J., vol. 11, pp. 3161-3170, 2011.
[10] Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, “Intrinsic response of graphene vapor sensors,” Nano Lett., vol. 9, pp. 1472-1475, 2009.
[11] X.-L. Li, G.-Y. Zhang, X.-D. Bai, X.-M. Sun, X.-R. Wang, E. Wang, and H.-J. Dai, “Highly conducting graphene sheets and langmuir-blodgett films,” Nat. Nanotechnol., vol. 3, pp. 538-542, 2008.
[12] H.-C. Chang, C.-C. Li, S.-F. Jen, C.-C. Lu, Ian Y.-Y. Bu, P.-W. Chiu, and K.-Y. Lee, “All-carbon field emission device by direct synthesis of graphene and carbon nanotube,” Diam. Relat. Mater., vol. 31, pp. 42-46, 2013.
[13] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
[14] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
[15] J. C. Charlier, J. P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B, vol. 46, pp. 4531-4540, 1992.
[16] L. M. Malard, M. A. Pimenta, G. Dresslhaus, and M. S. Dresslhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, pp. 51-87, 2009.
[17] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapor deposition of graphene on copper,” J. Mat. Chem., vol. 21, pp. 3324-3334, 2011.
[18] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9, pp. 1752-1758, 2009.
[19] L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, “Synthesis, structure, and properties of boron- and nitrogen-doped graphene,” Adv. Mater., vol. 21, pp. 4726-4730, 2009.
[20] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, “Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets,” ACS Nano, vol. 5, pp. 4112-4117, 2011.
[21] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
[22] H. Gao, L. Song, W. Guo, L. Huang, D. Yang, F. Wang, Y. Zuo, X. Fan, Z. Liu, W. Gao, R. Vajtai, K. Hackenberg, and P. M. Ajayan, “A simple method to synthesize continuous large area nitrogen-doped graphene,” Carbon, vol. 50, pp. 4476-4482, 2012.
[23] H.-M. Jeong, J.-W. Lee, W.-H. Shin, Y.-J. Choi, H.-J. Shin, J.-K. Kang, and J.-W. Choi, “Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes,” Nano Lett., vol. 11, pp. 2472-2477, 2011.
[24] J. Robertson and C. A. Davis, “Nitrogen doping of tetrahedral amorphous carbon,” Diam. Relat. Mater., vol. 4, pp. 441-444, 1995.
[25] T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L. Zhao, K. S. Kim, U. Wurstbauer, C. Gutiérrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, and A. N. Pasupathy, “Connecting dopant bond type with electronic structure in N-doped graphene,” Nano Lett., vol. 12, pp. 4025-4031, 2012.
[26] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. Mariotto, “Nitrogen modification of hydrogenated amorphous carbon films,” J. Appl. Phys., vol. 81, pp. 2626-2634, 1997.
[27] W. J. Schutte, J. L. D. Boer, and F. Jellinek, “Crystal structures of tungsten disulfide and diselenide,” J. Solid State Chem., vol. 70, pp. 207-209, 1987.
[28] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Progress Surf. Sci., vol. 29, pp. 1-167, 1988.
[29] G. A. N. Connell, J. A. Wilson, and A. D. Yoppe, “Effects of pressure and temperature on exciton absorption and band structure of layer crystals: Molybdenum disulphide,” J. Phys. Chem. Solids, vol. 30, pp. 287-296, 1969.
[30] A. F. Wells, “Structures based on the 3-connected net 103-b,” J. Solid State Chem., vol. 54, pp. 378-388, 1984.
[31] T. Bartels, W. Bock, J. Braun, C. Busch, W. Buss, W. Dresel, C. Freiler, M. Harperscheid, R. P. Heckler, D. Hörner, F. Kubicki, G. Lingg, A. Losch, R. Luther, T. Mang, S. Noll, and J. Omeis, “Lubricants and lubrication,” Ullmann's Encyclopedia Ind. Chem., 2003.
[32] R. Tenne and M. Redlich, “Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes,” Chem. Soc. Rev., vol. 39, pp. 1423-1434, 2010.
[33] S.-W. Han, H. Kwon, S.-K. Kim, S. Ryu, W.-S. Yun, D.-H. Kim, J.-H. Hwang, J.-S. Kang, J. Baik, H.-J. Shin, and S.-C. Hong, “Band-gap transition induced by interlayer van der Waals interaction in MoS2,” Phys. Rev. B, vol. 84, pp. 045409, 2011.
[34] Y.-F. Chen, J.-Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, and L.-M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano, vol. 7, pp. 4610-4616, 2013.
[35] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single and fewlayer MoS2.,” ACS Nano, vol. 4, pp. 2695–2700, 2010.
[36] J. Verble and T. Wieting, “Lattice mode degeneracy in MoS2 and other layer compounds,” Phys. Rev. Lett., vol. 25, pp. 362-365, 1970.
[37] G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B, vol. 60, pp. 2883–2892, 1999.
[38] T. Wieting and J. Verble, “Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2,” Phys. Rev. B, vol. 3, pp. 4286–4292, 1971.
[39] C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, “A comparative study of lattice dynamics of three- and two-dimensional MoS2,” J. Phys. Chem. C, vol. 115, pp. 16354–16361, 2011.
[40] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett., vol. 99, pp. 102109, 2011.
[41] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, pp. 1385–1390, 2012.
[42] A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B, vol. 84, pp. 155413, 2011.
[43] D. O. Dumcencoa, K.-Y. Chen, Y.-P. Wang, Y.-S. Huang, and K.-K. Tiong, “Raman study of 2H-Mo1−xWxS2 layered mixed crystals,” J. Alloys Compd., vol. 506, pp. 940-943, 2010.
[44] M. Regula, C. Ballif, and F. Lévy, Polycrystalline Semiconductors IV – Physics, Chemistry and Technology, Switzerland: Trans Tech, Zug, 1995.
[45] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
[46] M. Genut, L. Margulis, R. Tenne, and G. Hodes, “Effect of substrate on growth of WS2 thin films,” Thin Solid Films, vol. 217, pp. 30-36, 1992.
[47] A. J. Waldau, M. C. L. Steiner, G. J. Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993.
[48] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, “Bulk synthesis of inorganic fullerene-like MS2 (M ) Mo, W) from the respective trioxides and the reaction mechanism,” J. Am. Chem. Soc., vol. 118, pp. 5362-5367, 1996.
[49] K. Ellmer, C. Stock, K. Diesner, and I. Sieber, “Deposition of ci-oriented tungsten disulfide (WS2) films by reactive DC magnetron sputtering from a W-target in Ar/H2S,” J. Cryst. Growth, vol. 182, pp. 389-393, 1997.
[50] K. Ellmer, R. Mientus, S. Seeger, and V. Wei, “Highly (001)-textured WS2–x films prepared by reactive radio frequency magnetron sputtering,” Phys. Stat. Sol. (a), vol. 201, pp. R97-P100, 2004.
[51] Y.-C. Jian, D.-Y. Lin, J.-S. Wu, and Y.-S. Huang, “Optical and electrical properties of Au- and Ag-doped ReSe2,” J. J. Appl. Phys., vol. 52, pp. 04CH06, 2013.
[52] Q.-H. Wang, K. Z. Kourosh, K. Andras, N. C. Jonathan, and S. S. Michael, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnology, vol. 7, pp. 699-712, 2012.
[53] R. K. Joshi, H. Gomez, F. Alvi, and A. Kumar, “Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions,” J. Phys. Chem. C, vol. 114, pp. 6610-6613, 2010.
[54] K. Urita, S. Seki, S. Utsumi, D. Noguchi, H. Kanoh, H. Tanaka, Y. Hattori, Y. Ochiai, N. Aoki, M. Yudasaka, S. Iijima, and K. Kaneko, “Effects of gas adsorption on the electrical conductivity of single-wall carbon nanotube,” Nano Lett., vol. 6, pp. 1325-1328, 2006.
[55] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
[56] J. Dai, J. Yuan, and P. Giannozzi, “Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study,” Appl. Phys. Lett., vol. 95, pp. 232105-1-232105-3, 2009.
[57] M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett., vol. 13, pp. 358-363, 2013.
[58] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep., vol. 3, pp. 016341-5, 2012.
[59] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Muller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Lett., vol. 14, pp. 6165-6170, 2014.
[60] Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S. L. Zhang, R. Liu, and Z. J. Qiu, “Photothermoelectric and photovoltaic effects both present in MoS2,” Sci. Rep., vol. 5, pp. 79381-7, 2015.
[61] M. Riordan and H. Lillian, Crystal fire: the invention of the transistor and the birth of the information age. USA: W. W. Norton and Company, pp. 88-97, 1988.
[62] J. R. Hook and H. E. Hall, “Orbital dynamics of 3He-A in the presence of a heat flow and a magnetic field,” J. Phys.C, vol. 12, pp. 783-800, 1979.
[63] S. Sze, Semiconductor devices physics and technology. Toronto: John Wiley and Sons, 1995.
[64] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mater. Sci. Res., vol. 2, pp. 101-112, 2013.
[65] I. Jung, D. A. Field, N. J. Clark, Y. Zhu, D. Yang, R. D. Piner, S. Stankovich, D. A. Dikin, H. Geisler, C. A. Ventrice Jr., and R. S. Ruoff, “Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption,” J. Phys. Chem. C, vol. 113, pp. 18480-18486, 2009.
[66] D. W. Boukhvalov and M. I. Katsnelson, “Modeling of graphite oxide,” J. Am. Chem. Soc., vol. 130, pp. 10697-10701, 2008.
[67] H.-M. Huang, Z.-B. Li, J.-C. She, and W.-L. Wang, “Oxygen density dependent band gap of reduced graphene oxide,” J. Appl. Phys., vol. 111, pp. 054317, 2012.
[68] M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, and C. Thomsen, “Phonon dispersion of graphite by inelastic x-ray scattering,” Phys. Rev. B, vol. 76, pp. 035439-1-035439-7, 2007.
[69] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, pp. 2127-2150, 2010.
[70] L. Fu, Y. Liu, Z. Liu, B. Han, L. Cao, D. Wei, G. Yu, and D. Zhu, “Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors,” Adv. Mater., vol. 18, pp. 181-185, 2006.
[71] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, pp. 751-758, 2010.
[72] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, “Nitrogen-doped graphene and its application in electrochemical biosensing,” ACS Nano, vol. 4, pp 1790-1798, 2010.
[73] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J.-R. Gong, “Controllable N-doping of graphene,” Nano Lett., vol. 10, pp. 4975-4980, 2010.
[74] X.-B. Wang, Y.-Q. Liu, D.-B. Zhu, L. Zhang, H.-Z. Ma, N. Yao, and B.-L. Zhang, “Controllable growth, structure, and low field emission of well-aligned CNx nanotubes,” J. Phys. Chem. B, vol. 106, pp. 2186-2190, 2002.
[75] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, “Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials,” J. Am. Chem. Soc., vol. 118, pp. 8071-8076, 1996.
[76] S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett., vol. 10, pp. 4944-4951, 2010.
[77] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science, vol. 324, pp. 768-771, 2009.
[78] T. Kato and R. Hatakeyama, “Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD,” ACS Nano, vol. 6, pp. 8508-8515, 2012.
[79] J. Malig, N. Jux, and D. M. Guldi, “Toward multifunctional wet chemically functionalized graphene - Integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity,” Acc. Chem. Res., vol. 46, pp. 53-64, 2013.
[80] J. Ito, J Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet,” J. Appl. Phys., vol. 103, pp. 113712, 2008.
[81] I. V. Antonova, I. A. Kotin, R. A. Soots, V. A. Volodin, and V. Y. Prinz, “Tunable properties of few-layer graphene-N-methylpyrrolidone hybrid structures,” Nanotechnology, vol. 23, pp. 315601, 2012.
[82] S. Reich, and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc. Lond. A, vol. 362, pp. 2271-2288, 2004.
[83] H.-C. Chang, Y.-J. Huang, H.-Y. Chang, W.-J. Su, Y.-T. Shih, Y.-S. Huang, and K.-Y. Lee, “Oxygen adsorption effect on nitrogen-doped graphene electrical properties,” Appl. Phys. Express, vol. 7, pp. 055101-1-055101-4, 2014.
[84] Y. He, J. Zhang, D. Li, J. Wang, Q. Wu, Y. Wei, L. Zhang, J. Wang, P. Liu, Q. Li, S. Fan, and K. Jiang, “Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers,” Nano Lett., vol. 13, pp. 5556-5562, 2013.
[85] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett., vol. 12, pp. 5576-5580, 2012.
[86] Z. Liang, X. Cai, S. Tan, P. Yang, L. Zhang, X. Yu, K. Chen, H. Zhu, P. Liu, and W. Mai, “Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions,” Phys. Chem. Chem. Phys., vol. 14, pp. 16111-16114, 2012.
[87] S.-P. Chang and T.-H. Chang, “Use of the thermal chemical vapor deposition to fabricate light-emitting diodes based on ZnO nanowire/p-GaN heterojunction,” J. Nanomaterials., vol. 1, pp. 903176-1-903176-4, 2011.
[88] L. Qin, D. Shao, C. Shing, and S. Sawyer, “Wavelength selective p-GaN/ZnO colloidal nanoparticle heterojunction photodiode,” Appl. Phys. Lett., vol. 102, pp. 071106-1-071106-4, 2013.
[89] D. Merki, S. Fierro, H. Vrubel, and X. Hu, “Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water,” Chem. Sci., vol. 2, pp. 1262-1627, 2011.
[90] C. Altavilla, M. Sarno, and P. Ciambelli, “A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W),” Chem. Mater., vol. 23, pp. 3879-3885, 2011.
[91] D. O. Dumcenco, Y.-C. Su, Y.-P. Wang, K.-Y. Chen, Y.-S. Huang, C.-H. Ho, and K.-K. Tiong, “Piezoreflectance and Raman characterization of Mo1-xWxS2 layered mixed crystals,” Solid State Phenom., vol. 170, pp. 55-59, 2011.
[92] D. O. Dumcenco, Y.-C. Su, Y.-P. Wang, K.-Y. Chen, Y.-S. Huang, C.-H. Ho, and K.-K. Tiong, “Polarization dependent Raman active modes study of the Mo1-xWxS2 mixed layered crystals,” Chin. J. Phys., vol. 49, pp. 270-277, 2011.
[93] H. Liu, K. K. A. Antwi, S. Chua, and D. Chia, “Vapor-phase growth and characterization of Mo1-xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates,” Nanoscale, vol. 6, pp. 624-629, 2014.
[94] J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. F. Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth, and S. Mathur, “Toward a systematic understanding of photodetectors based on individual metal oxide nanowires,” J. Phys. Chem. C, vol. 112, pp. 14639-14644, 2008.
[95] K. C. Hass, H. Ehrenreich, and B. Velický, “Electronic structure of Hg1-xCdxTe,” Phys. Rev. B, vol. 27, pp. 1088-1100, 1983.
[96] D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li, and J.-H. He, ACS Nano 7, 3905 (2013).
[97] J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys., vol. 113, pp. 143703, 2013.
[98] A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep., vol. 4, pp. 6608, 2014.
[99] G. P. Kotchey, B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, V. E. Kagan, and A. Star, “The enzymatic oxidation of graphene oxide,” ACS Nano, vol. 5, pp. 2098-2108, 2011.
[100] K. Jasuja, J. Linn, S. Melton, and Vikas Berry, “Microwave-reduced uncapped metal nanoparticles on graphene: Tuning catalytic, electrical, and raman properties,” J. Phys. Chem. Lett., vol. 1, pp. 1853-1860, 2010.
[101] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, “Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis,” ACS Nano, vol. 5, pp. 4350-4358, 2011.
[102] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, and S.-H Yoon, “Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide,” Langmuir, vol. 26, pp. 16096-16102, 2010.
[103] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, “Simultaneous nitrogen doping and reduction of graphene oxide,” J. Am. Chem. Soc., vol. 131, pp. 15939-15944, 2009.

無法下載圖示 全文公開日期 2022/01/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE