簡易檢索 / 詳目顯示

研究生: 王文鴻
Wen-Hung Wang
論文名稱: 超高分子量聚乙烯/奈米二氧化矽纖維超高延伸性質影響機理之研究
Ultradrawing Properties of Ultra-high Molecular Weight Polyethylene / Nanosilica Fibers
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 黃國賢
none
陳幹男
none
黃繼遠
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 超高分子量聚乙烯奈米二氧化矽改質
外文關鍵詞: ultrahigh molecular weight polyethylene, nanosilic, modified
相關次數: 點閱:221下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要針對奈米二氧化矽 (nanosilica) 及改質奈米二氧化矽(modified nanosilica) 含量對超高分子量聚乙烯 (ultrahigh molecular polyetheylenes,(UHMWPE)/nanosilica (F2Sy-170-5)及UHMWPE/ modified nanosilica (F2Smx-y-170-5) 初絲樣品的可延伸及抗張性質影響作一有系統性探討。研究發現當PE-g-MAH /nanosilica的質量比達到一最適化值6時,modified nanosilica的比表面積達到最大值。 熱學性質分析發現,F2Smx-y-170-5 初絲系列樣品的熔點(Tm)和結晶度(Xc) 均分別明顯低及高於對應具相同nanosilica含量F2Sy-170-5 初絲系列樣品的Tm和Xc數值。而且,當PE-g-MAH /nanosilica的質量比達到一最適化值6時,F2Sm2-y-170-5 初絲系列樣品的Tm和Xc數值分別達到最小和最大值。 值得注意的是,F2Sy-170-5和F2Smx-y-170-5纖維系列樣品的可延伸比(Dra)數值隨其內nanosilica或modified nanosilica含量分別達0.00125 及 0.001wt%數值時,對應的Dra數值均達到最大值。上述經添加最適化0.001wt%modified nanosilica之F2Smx-0.001-170-5纖維系列樣品所得之最大Dra數值,進一步隨其內PE-g-MAH/nanosilica 質量比達最適化值6時,又達另一最大值322.6。 抗張性能研究進一步表明,當加入最適化的nanosilica 或modified nanosilica,延伸後的纖維樣品F2Sy-170-5和F2Smx-y-170-5 都能獲得優異的抗張性質。 為瞭解上述這些有趣的現象,本研究中對純 nanosilica 和modified nanosilica 的紅外光譜及表面積分析,延伸後纖維樣品的順向度性質和延伸性進行研究。


Systemic investigation of the influence of the original and modified nanosilica contents on the ultradrawing properties of ultrahigh molecular weight polyethylene(UHMWPE)/nanosilic (F2Sy-170-5) and UHMWPE/ modified nanosilica (F2Smx-y-170-5) as-prepared fibers are reported. In a way similar to those found for the orientation factor values, the achievable draw ratios (Dra) of the F2Sy-170-5 and F2Smx-y-170-5 as-prepared fibers approached a maximum value as their nanosilica and/or modified nanosilica contents reached their corresponding optimum values. The maximum Dra values obtained for F2Smx-0.001-170-5 as-prepared fiber specimens prepared at varying maleic anhydride grafted polyethylene (PE-g-MAH)/ nanosilica weight ratios were significantly higher that of the F2S0.00125-170-5 as-prepared fiber specimen prepared at the optimum original nanosilica. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn F2Sy-170-5 and F2Smx-y-170-5 fibers can be obtained by ultradrawing the fibers prepared at their optimum original nanosilica and/or modified nanosilica contents. To understand the interesting orientation, ultradrawing and tensile properties of F2Sy-170-5 and F2Smx-y-170-5 fiber specimens, FTIR and specific surface area of the original and modified nanosilica were performed in this study.

論文摘要...................................................................................................Ⅲ ABSTRACT Ⅳ 誌謝 Ⅴ 目錄 Ⅵ 圖表索引 Ⅸ 第一章 前言..............................................................................................1 第二章 文獻回顧..................................................................................... 9 2.1 聚乙烯簡介....................................................................................9 2.2 高強力聚乙烯纖維........................................................................10 2.2.1 高強力聚乙烯纖維之製造技術.............................................10 2.2.1.1 固態擠出法(solid state extrusion).............................10 2.2.1.2 超延伸法(ultradrawing).............................................11 2.2.1.3 區域延伸法(zone drawing)........................................12 2.2.1.4 表面成長法(surface growth method)........................13 2.2.1.5 凝膠紡絲法(gel spinning)........................................15 2.2.2 UHMWPE使用凝膠紡絲技術得到高強力纖維的原因.......16 2.2.3 UHMWPE凝膠紡絲的技術要點...........................................17 2.3 熱拉伸對凝膠原絲形態和結構的影響.......................................19 2.3.1 型態和力學性質....................................................................19 2.3.2 熱性能....................................................................................19 2.3.3 聚集態結構............................................................................20 2.4奈米二氧化矽的結構及性能...........................................21 2.4.1奈米二氧化矽的結構.........................................................21 2.4.2奈米二氧化矽的性質.............................................................22 2.4.3奈米二氧化矽的分散方法......................................................22 2.4.4奈米二氧化矽/聚乙烯複合材料相關文獻............................23 第三章 實驗 3.1 UHMWPE/ modified nanosilica凝膠纖維的製備備…................26 3.1.1改質二氧化矽(modified nanosilica)製備..............................26 3.1.2凝膠溶液的製備......................................................................27 3.1.3凝膠紡絲流程..........................................................................29 3.2 Nanosilica,modified nanosilica的紅外光譜測試……………...31 3.3 nanosilica,modified nanosilica的粒徑分析測試……………….32 3.4凝膠纖維熱學性質分析.................................................................33 3.5凝膠纖維分子順向度分析.............................................................34 3.6凝膠纖維定溫熱延伸性質之測定.................................................35 3.7凝膠纖維抗張性質分析.................................................................36 第四章 結果與討論 4.1 nanosilica和modified nanosilica樣品的的傅立葉轉換紅外線光譜分析……………............................................................................37 4.2 nanosilica和modified nanosilica樣品的比表面積分析................39 4.3 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica初絲纖維熱學性質分析.............................................41 4.4 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica纖維樣品順向度分析...................................................48 4.5 UHMWPE,UHMWPE/ nanosilica及UHMWPE/ modified nanosilica纖維的可延伸性質........................................................50 4.6 UHMWPE,UHMWPE/ nanosilica及UHMWPE/modified nanosilica 纖維的抗張性質...........................................................53 第五章 結論............................................................................................56 參考文獻..................................................................................................58

1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070 (1981).
5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
12. A. E. Zacharrriades and R. S. Porter, Ed., , Marcel Dekker, Inc., New Tork (1983).
13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31,868 (1982).
16. M. Mihailov and L. Minkova, Coll. & Polym. Sci., 265, 681 (1987).
17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys., 197, 3531 (1996).
19. J. T. Yeh and H. C. Wu, Polym. J., 30, 1 (1998).
20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 70, 149 (1998).
21. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
22. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
24. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
25. J. T. Yeh, T. W. Wu, Y. C. Lai, H. P. Zhou, Q. Zhou, Q. C. Li, S. Wen , F. C. Tsai, C. Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., in press(2010).
26. 徐國財、張立德,奈米複合材料,五南圖書出版股份有限公司,第2-16頁(2004)。
27. W. M. P:erkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
28. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
29. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
30. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
31. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
32. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
33. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
34. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
35. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
36. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
37. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
38. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
39. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
40. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
41. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
42. Ray H. Baughman, A. A. Zakhidov, Walt. A. de Heer, Sci., C, 297 (2002).
43. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
44. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
45. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
46.晨光化工研究院有機矽編寫組,有機矽單體及聚合物,化學工業出版社,第427-428頁(1986)。
47.H. Ishida, Jack L, Journal of Colloid and Interface science, 64.3, 555-564(1978).
48.DE Haan J w, Van Den Bogaert H M, Oonjee JJ, etal, Journal of Col Ioid and Interface Science, 110.2 , 591-60(1986).
49.Daniel M W,Francis Lf, Journal of Colloid and Interface Science, 205.1, 191-200(1998).
50.郭衛紅,李盾,蘇誠偉等,塑膠工業,26.5,第10-12頁(1998)。
51.Min Zhi Rong,Ming Qiu Zhang, Yong Xiang Zheng, Polymer, 42, 3301(2001).
52. Scott, C.,Ishida, H. and Murer, F. H. J., “Composite Interfaces”, 177-193 (1986).
53. Duchet, J., Chapel, J. P., Chabert, B., Spitz, R. and Gerard, J. F.,Journal of Applied Polymer Science, 65, 2481-2492 (1997).
54. Wang, K. H., Choi, H., Koo, C. M., Xu, M., Chung, I. J., Jang, M. C.,Choi, S. W. and Song, H. H., J. Polym. Sci.: Part B:Polym. Phys., 40, 1454-1463 (2002).
55. Kageyama, K., Nature, 285, 2113-2115 (1999).
56. Wu, C. S. and Liao, H. T., Journal of Applied Polymer Science, 88,966-972 (2003).
57. G. D. Liang, J. T. Xu, S. P. Bao and W.B. Xu, J. Appl. Polym. Sci., 91(6), 3974-3980(2004).
58. T. Jiang, J. T. Yeh, Y. T. Lin and K. N. Chen., Polym. Eng. Sci., 43(11), 1765-1777(2003).
59. M. Matsuo, C. Sawatari, M. Iida and M. Yoneda, Polym. J., 17(11), 1197-1208(1985).

無法下載圖示 全文公開日期 2016/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE