簡易檢索 / 詳目顯示

研究生: 杜永枰
Yung-Ping Tu
論文名稱: 無線通訊系統中佐以軟式干擾刪除之接收器設計
On the Receiver Design With Soft Interference Cancellation in Wireless Communication Systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 廖弘源
Hong-Yuan Liao
張順雄
Shun-Hsyung Chang
賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 146
中文關鍵詞: 時空區塊碼空間多工廣義旁辦消除器最小均方差多使用者偵測
外文關鍵詞: multiuser detection, interference cancellation
相關次數: 點閱:247下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著用戶對品質要求日益增加,本論文之目的即在促進目前新興的無線通訊
中將多使用者存取干擾去除。因此,本文嘗試提出多個軟式資訊輔助決策且高效
能、低複雜度的多使用者偵測器,用以有效提昇各式不同無線通訊系統之干擾去
除能力。
本論文第一個論述在多輸入多輸出的系統下,針對Alamouti 時空區塊碼與
空間多工結合系統提出一個時-空二階段軟式決策接收器。接收器之第一階段包
括一組軟式廣義旁瓣消除器庫,用以針對傳送符元產生更精確的初始估測,第二
階段則利用比對濾波器連續地以群遞方式將每個時空區塊碼所含的兩個符元同
時偵測出來。
本論文第二個論述是在多輸入多輸出的多重路徑上鏈路分碼多工(CDMA)
系統下,針對異質訊號模式傳輸提出有效率的交替式多使用者偵測器,於此,資
料傳送將採用空間多工或時-空區塊碼技術進行二擇一傳輸以獲得高速傳輸或傳
送多樣性增益。此新接收器首先依傳輸模式分成兩群,然後再交替地將各群的訊
號利用軟式資訊以疊代方式加強多使用者存取干擾去除能力。而且,為能實現實
際的低複雜度,基於使用者間彼此的等效通道相關度,進一步地依將各群的使用
者劃分成為人數較小的子群,然後再次利用最小均方差軟式偵測器庫且平行地將
訊號偵測,以降低運算複雜度負擔。
本論文第三個論述是將延伸的交替式多使用者偵測器,應用於上鏈路多速率
多載波之單輸入多輸出的多重路徑CDMA 系統下,稱之為疊代群遞多使用者偵
測器。此偵測器利用軟式資訊修正干擾的估測,以增強干擾去除能力。於此,使
用者依傳輸速率進行分群,各群內的使用者依序將干擾可靠地估測後刪除之,再
整群傳遞至下一群的偵測。而且,為能實現實際的低複雜度,再次利用第二個論
述之切割方法,以降低運算負擔。
本論文第四個論述進一步考慮載波頻率偏移 (CFO) 對上鏈路多重正交分頻
多工(OFDMA)對符元偵測的影響,提出子空間拆解方法並利用資料既有結構,首
先將干擾自訊號中分離,再拆解成錯誤決策傳遞及未偵策符元干擾項,然後於串
列式干擾刪除拆架構下刪除,且透過軟式資訊更完整地將干擾刪除。同時為實現
低複雜度,我们利用ICI 矩陣對角集中的結構只考慮主要干擾項,有效地實現低
運算需求且效能只微量降低。
此外,我們也對上述各個論述,進行計算機模擬與效能分析,結果也驗証了我們所提的軟式接收器,相較於之前的方法確實能夠提供明顯的效能增益及合理
的複雜度。而且,針對此應用軟式資訊的接收器,我們包含有兩種極端狀況的討
論,及公正地比較各偵測器複雜度負荷的正確性。


To accommodate an ever increasing subscribers with prescribed quality of service(QoS), in this thesis, we propose several efficacious soft information-assisted multiuser detectors (MUDs) to reinforce the capability of interference cancellation under various emerging wireless communication systems. The investigation of this thesis includes the followings.
First, we present a new space-time two-stage receiver with the assistance of
soft information for the Alamouti space-time block code (STBC) and spatially multiplexing (SM) combined multiple-input multiple-output (MIMO) systems. The
first stage of the receiver consists of a bank of soft generalized sidelobe canceller (GSC)-based detectors to yield an initial estimate of the transmitted symbols. The groupwise detection is then conducted successively in the second stage by using the matched filters (MFs) to simultaneously detect the two consecutive symbols in one STBC block with the removal of the soft interferences in between.
Second, an alternating MUD (AMUD) for the uplink of heterogeneoussignaling
MIMO code division multiple access (CDMA) systems over multipath
fading channels is addressed, where the data are transmitted using either SM for high transmission rate or STBC for transmit diversity gains. The new MUD first separates users into two groups according to their transmission signaling schemes and then detects the transmitted symbols in each group alternately with the removal of iteratively refined soft information-assisted multiple access interference (MAI) to enhance the interference cancellation capability. Moreover, for practical low-complexity implementation, the users in each group are further partitioned into smaller subgroups based on their effective channel correlations and then detected in parallel by a bank of minimum mean-squared error (MMSE) soft detectors to further reduce the computational load.
Third, an extension of the AMUD, referred to as iterative groupwise MUD
(IGMUD), is considered for the uplink of multi-rate multi-carrier code division
multiple access (MC-CDMA) systems. The IGMUD first classifies the users into
separate groups according to their transmission rates. In each iteration, these
groups of users are detected sequentially based on a set of group detectors with the removal of MAI group by group. For practical low-complexity implementation, a partitioning scheme similar as the above is also utilized to mitigate the computational overhead.
Finally, we consider a novel subspace decomposition-based detection scheme
with the assistance of soft information cancellation in the uplink of interleaved orthogonal frequency division multiple access (OFDMA) systems. By utilizing the inherent data structure, the interference is first separated with the desired symbol and then further decomposed into one caused by the decision errors and the other one by the undetected symbols in the successive interference cancellation (SIC) scheme. With such an ingenious interference decomposition along with the soft processing scheme, the new receiver can render more thorough interference cancellation, which in turn entails enhanced system performance. Moreover, for practical implementations, we also consider to only deal with the principal components of inter-carrier interference (ICI) to reduce the computational load. Conducted simulations results show that the developed receivers can offer significant performance improvement compared with previous works in various scenarios. The corresponding low-complexity implementations are, in particular, appealing for practical applications, since they require substantially lower computational overhead with only slight performance loss.

Contents 1 Introduction 1 1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Some Related Enabling Techniques . . . . . . . . . . . . . . . . . . 5 1.2.1 Multiple Antenna Systems . . . . . . . . . . . . . . . . . . . 5 1.2.2 Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Soft Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 A Two-Stage Receiver With Soft Interference Cancellation for Space-Time Block Code and Spatial Multiplexing Combined Systems. . . . .19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Review of Previous Works . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Group Detection . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Group Layer Space Time Detection (GLST) . . . . . . . . . 23 2.3.3 Symbol Detection . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Two-Stage Receiver With Soft Interference Cancellation . . . . . . . 25 2.4.1 Proposed Two-Stage Soft Receiver . . . . . . . . . . . . . . 25 2.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . 33 2.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Alternating Multiuser Detection With Soft Interference Cancellation for Heterogeneous-Signaling MIMO CDMA Systems 50 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Alternating MUD and Low-complexity Implementation . . . . . . . 54 3.3.1 Proposed Soft Information Assisted MUD . . . . . . . . . . 55 3.3.2 Reduced-Complexity Implementation . . . . . . . . . . . . . 62 3.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 64 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Efficient Groupwise Multiuser Detection with Iterative Soft Interference Cancellation for Multi-Rate MC-CDMA 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Groupwise MUD and Practical Implementation . . . . . . . . . . . 80 4.3.1 Proposed Iterative Groupwise MUD . . . . . . . . . . . . . . 80 4.3.2 Reduced-Complexity Implementation . . . . . . . . . . . . . 86 4.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 90 4.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 A Novel Subspace Decomposition-based Detection Scheme with Soft Interference Cancellation for OFDMA Uplink 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3 Subspace Decomposition-Based Detection and Low-Complexity Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Proposed Subspace Decomposition-Based Soft Receiver . . . 104 5.3.2 Low-Complexity Implementation . . . . . . . . . . . . . . . 113 5.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 117 5.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 121 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Conclusions 129 6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 REFERENCE . . . . . . . . . .132 A Proof of (2.8) and (2.9) . . . . . . . . . .142 B Proof of (2.17) and (2.18) . . . . . . . . . .143 C Proof of (3.9) . . . . . . . . . .145

[1] M. P. Metroka, “An introduction to narrowband AMPS,” Proc. IEEE Globe-
Com, vol. 2, pp. 1463-1468, Dec. 1991.
[2] J. Uddenfeldt, “Digital cellular-its roots and its future,” Proc. of IEEE, vol.
86, pp. 1319-1324, July 1998.
[3] J. Uddenfeldt, “GSM-European cellular goes digital,” IEE Review, vol.37, pp.
253-257, July 1991.
[4] V. K. Garg, IS-95 and CDMA2000. Prentice Hall, Upper Saddle River, NJ,
2000.
[5] T. Ojanpera and R. Prasad, “An overview of third-generation wireless personal
communications: a European prospective,” Wireless Personal Communications,
vol. 5, no. 6, pp. 59-65, Dec 1998.
[6] M. W. Oliphant, “Third-generation wireless must wait for services to catch
up,” IEEE Spectrum, vol. 39, pp. 14-16, June 2002.
[7] H. Zhai, X. Chen, Y. Fang, “How well can the IEEE 802.11 wireless LAN
support quality of service?,” IEEE Trans. Wireless Communications, vol. 4,
pp. 3084-3094, Nov. 2005.
[8] C. Huang, H.-H. Juan, M.-S. Lin, and C.-J. Chang, “Radio resource management
of heterogeneous services in mobile WiMAX systems,” IEEE Wireless
Communications, vol. 14, pp. 20-26, Feb. 2007.
[9] H. Berndt, Towards 4G Technologies: Services with Initiative. John Wiley
and Sons, Inc., 2008.
[10] R. Steele, Mobile Radio Communicaitons. Pentech Press, London, 1992.
[11] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper
Saddle River, NJ: Prentice Hall, 2nd 2002.
[12] W.-C. Jakes, Microwave mobile Communications. Wiley, New York, 1974.
[13] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Communication
Mag., vol. 35, pp. 126-133, Dec. 1997.
[14] L. Hanzo, M. M‥unster, B. J. Choi, and T. Keller, OFDM and MC-CDMA.
John Wiley and IEEE Press, 2003.
[15] U. Ladebusch and C. A. Liss, “Terrestrial DVB (DVB-T): A broadcast technology
for stationary portable and mobile use,” Proc. of IEEE, vol. 94, pp.
183-193, Jan. 2006.
[16] 802.16e: IEEE Standard for Local and Metropolitan Area Networks Part 16:
Air Interface for Fixed and Mobile BroadbandWireless Access Systems Amendment
for Physical and Medium Access Control Layers for Combined Fixed and
Mobile Operation in Licensed Bands, IEEE P802.16e/D11, Sep. 2005.
[17] C. Eklund, R. B. Marks, K. L. Stanwood and S. Wang, “IEEE Standard
802.16: A technical overview of the wirelessMANTM air interface for broadband
wireless access,” IEEE Communications Mag., vol. 40, pp. 98-107, June
2002.
[18] H. Holma and A. Toskala, LTE for UMTS-OFDMA and SC-FDMA Based
Radio Access, John Wiley and Sons 2009.
[19] Y. Sun, “Bandwidth-efficient wireless OFDM,” IEEE Journal on Selected Areas
in Communications, vol. 19, pp. 2267-2278, Nov. 2001.
[20] A. Seyedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM
systems,” IEEE Trans. Vehicular Techchnolog., vol. 54, no. 1, pp. 198-210,
Jan. 2005.
[21] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge University press 2003.
[22] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,” Wireless Personal Communications,
vol. 6, pp. 311-335, 1998.
[23] X. Bernstein and A. M. Haimovic, “Space-time processing for incrreased capacity
of wireless CDMA,” in Proc. IEEE Int. Conf. Communications and
Systems, pp. 597-601, 1996.
[24] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Trans. Information Theory, vol.
49, no. 5, pp. 1073-1096, May 2003.
[25] S. Alamouti, “A simple transmit diversity scheme for wireless communications,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 8,
pp. 1451-1458, Oct. 1998.
[26] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high
data rate wireless communication: Performance criterion and code construction,”
IEEE Trans. Information Theory, vol. 44, pp. 744-765, Mar. 1998.
[27] S. Baro, G. Bauch and A. Hansmann, “Improved codes for space-time trellis
coded modulation,” IEEE Communications Lett., vol. 4, no. 1, pp. 20-22, Jan.
2000.
[28] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit errorcorrecting
coding and decoding: turbo codes,” in Proc. of Inter. Conf. Communications
(ICC), pp. 1064-1070, 1993.
[29] G. J. Foschini, “Layered space-time architecture for wireless communication
in a fading environment when using multi-element antennas,” Bell Labs Technical
Journal, Autumn 1996.
[30] G. D. Golden, G. J. Foschini, R. Valenzuela, and P. Wolniansky, “Detection
algorithm and initial laboratory results using V-BLAST space-time communication
architecture,” Electronocs. Lett., vol. 35, pp. 14-16, Jan. 1999.
[31] S. Verdu, Multiuser Detection. Cambridge University Press, 1998.
[32] A. Kapur and M. K. Varanasi, “Multiuser detection for overloaded CDMA
systems,” IEEE Trans. Information Theory, vol. 49, pp. 1728-1742, July 2003.
[33] S. Haykin, Communication Systems. John Wiley and Sons, Inc., 2001.
[34] J. Dmochowski, J. Benesty and S. Affes, “Linearly constrained minimum variance
source localization and spectral estimation,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 16, pp. 1490-1502, Aug. 2008.
[35] W. Wang, Z. Xu, X. Wu and Q. Yin, “Optimal linear multiuser receiver in
DS-CDMA system,” in Proc. Vehicular Technology Conf., pp. 527-531, 2001
Spring.
[36] T. -H. Liu, “Linearly constrained minimum variance filters for blind multiuser
detection,” IEEE Trans. Communications, vol. 51, pp. 1649-1652, Oct. 2003.
[37] H.-Y. Lu, W. H. Fang, Y.-T. Chen, and K. L. Yeh, “Heterogenous information
aided semiblind group MUD for MIMO MC-CDMA system,” in Proc.
Vehicular Technology Conf., pp. 730-734, Oct. 2007.
[38] U. Madhow, “Blind adaptive interference suppression for the near-far resistant
acquisition and demodulation of direct-sequence CDMA signals,” IEEE
Trans. Signal Processing, vol. 45, pp. 124-136, Jan. 1997.
[39] M. Souden, J. Benesty, S. Affes, “A study of the LCMV and MVDR noise
reduction filters,” IEEE Trans. Signal Processing, vol. 58, pp. 4925-4935, Sep.2010.
[40] O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,”
Proc. IEEE, vol. 60, pp. 926-935, Aug. 1972.
[41] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained
adaptive beamforming,” IEEE Trans. Antennas Propagation, vol. 30, pp. 27-
34, Jan. 1982.
[42] V. K. Garg and A. Seshadri, “Performance improvement in wireless system
due to parallel interference cancellation (PIC) algorithm,” in Proc. IEEE Personal
Wireless Communications, pp. 243-249, Dec. 2002.
[43] Y. D. Li and T. T. Tjhung, “Performance analysis of PIC-CDMA systems,”
in Proc. IEEE Int. Conf. Communications and Systems, pp. 1086-1090, 2002.
[44] S. Feng, H. Minn, L. Yan and L. Jinhui, “PIC-based iterative SDR detector for
OFDM systems in doubly-selective fading channels,” IEEE Trans. Wireless
Communications, vol. 9, pp. 86-91, Jan. 2010.
[45] K. C. Lai and J. J. Shynk, “Performance evaluation of a generalized linear
SIC for DS/CDMA signals,” IEEE Trans. Signal Processing, vol. 51, pp. 1604-
1614, June 2003.
[46] P. Patel and J. Holtzman, “Performance comparison of a DS/CDMA system
using a successive interference cancellation (IC) scheme and a parallel IC
scheme under fading,” in in Proc. of Inter. Conf. Communications (ICC),
pp. 510-514, 1994.
[47] D. Koulakiotis and A. H. Aghvami, “Evaluation of a DS/CDMA multiuser
receiver employing a hybrid form of interference cancellation in Rayleighfading
channels,” IEEE Communications Lett., vol. 2, pp. 61-63, Mar. 1998.
[48] N. Kim and M. K. Howlader, “Analysis of a new hybrid interference cancellation
(HIC) system,” in Proc. IEEE Wireless Communications Networking
Conf., pp. 1828-1832, 2004.
[49] A. Host-Madsen and K.-S. Cho, “MMSE/PIC multiuser detection for
DS/CDMA systems with inter- and intra-cell interference,” IEEE Trans.
Communications, vol. 47, pp. 291-299, Feb. 1999.
[50] H.-Y. Lu and W.-H. Fang, “Decision aided hybrid MMSE/SIC multiuser detection:
Structure and AME performance analysis,” IEICE Trans. Fundamentals,
vol. E89-A, no. 2, pp. 600-610, Feb. 2006.
[51] B. Vucetic and J. Yuan, Turbo codes principles and applications. Kluwer Academic Publishers, 2000.
[52] J. Hagenauer, “Source-Controlled Channel Decoding,” IEEE Trans. Communications, vol. 43, no. 9, pp. 2449-2457, 1996.
[53] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancellation and
decoding for coded CDMA,” IEEE Trans. Communications, vol. 47, no.7, pp.
1045-1061, July 1999.
[54] J.-H. Ko, J.-S. Joo, and Y.-H Lee, “On the use of sigmoid functions for multistage
detection in asynchronous CDMA systems,” IEEE Trans. Vehicular
Technology, vol. 48, no. 2, pp. 522-526, Mar. 1999.
[55] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
Turbo codes,” IEEE Trans. Communications, vol. 44, pp. 1261-1271,
Oct. 1996.
[56] R. Koetter, A. C. Singer, and M. Tiiuchler, “Turbo equalization,” IEEE Signal
Processing Mag., vol. 21, pp. 67-80, Jan. 2004.
[57] H. V. Poor, “Itervative multiuser detection,” IEEE Trans. Signal Processing
Mag., vol. 21, pp. 81-88, Jan. 2000.
[58] P. D. Alexander and M. C. Reed, “Iterative multiuser interference reduction:
turbo CDMA,” IEEE Trans. Communications, vol. 47, pp. 1008-1014, July.
1999.
[59] A. D. Damnjanovic and B. R. Vojcic, “Iterative multiuser detection/decoding
for turbo coded CDMA systems,” IEEE Communications Lett., vol. 5, pp.
104-106, Mar. 2001.
[60] S. Haykin, Modern Wireless Communications, Pearson Education International,
2005.
[61] R. W. Heath Jr. and A. J. Paulraj, “Switching between diversity and multiplexing
in MIMO systems,” IEEE Trans. Communications, vol. 3, no.6, pp.
962-968, June 2005.
[62] L. Zhao and V.K. Dubey, “Detection schemes for space-time block code and
spatial multiplexing combined system,” IEEE Communications Lett., vol. 9,
no. 1, pp. 49-51, Jan. 2005.
[63] X.-N. Tran, H.-C. Ho, T. Fujino, and Y. Karasawa, “Performance comparison
of detection methods for combined STBC and SM systems,” IEICE Trans.
Communications, vol. 91, no. 6, pp. 1734-1742, Jun. 2008.
[64] L. Dai, S. Sfar, and K. B. Letaief, “An efficient detector for combined spacetime
coding and layered processing,” IEEE Trans. Communications vol. 53,
no. 9, pp. 1438-1442, Sep. 2005.
[65] J.-L. Yu, C.-L. Hung and I.-T. Lee, “A two-stage partially adaptive linear
receiver for CDMA MIMO systems with Alamouti’s space-time block codes,”
Digital Signal Processing, vol. 17, no. 8, pp. 244-260, Sep. 2006.
[66] G. J. Foschini and M. J. Gans, “Layered space-time architecture for wireless
communication in a fading environment when using multiple antennas,” Bell
Labs Technical Jurnal, vol. 1, no. 2, pp. 41-59, 1996.
[67] E.-A. Fain and M.-K. Varanasi, “Diversity order gain for narrow-band multiuser
communications with pre-combining group detection,” IEEE Trans.
Communications, vol. 48, no. 4, pp. 533-536, Apr. 2000.
[68] Z. Tian, K.-L. Bell and H. L. Van Trees, “Robust constrained linear receivers
for CDMA wireless systems,” IEEE Trans. Signal Processing, vol. 49, no. 7,
pp. 1510-1522, July 2001.
[69] M. F. Bugallo, J. M˙iguez and L. Castedo, “A maximum likelihood approach
to blind multiuser interference cancellation,” IEEE Trans. Signal Processing,
vol. 49, no. 6, pp. 1228-1239, June 2001.
[70] H.-Y. Lu and W.-H. Fang, “Soft information assisted space-time multiuser
detection for highly loaded CDMA,” IEEE Trans. Wireless Communications,
vol. 8, no. 2, pp. 662-667, Feb. 2009.
[71] D. N. Kalofonos and J. G. Proakis, “On the performance of coded low spreading
gain DS-CDMA systems with random spreading in sequences multipath
Rayleigh fading channels,” in Proc. IEEE Global Telecommunications Conf.,
pp. 3247-3251, 2001.
[72] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New
York: McGraw-Hill, 2002.
[73] M. Vehkaper‥a, D. Tujkovic, Zexian Li and M. Juntti, “Combined spatial multiplexing
and diversity techniques for coded MC-CDMA systems with suboptimal
MMSE-based receivers ,” in Proc. IEEE Vehicular Techchnolog Conf.,
pp. 280-284, 2005.
[74] G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed., Johns Hopkins
University Press: Maryland, 1996.
[75] L. Qian, and S. Berber, “3G WCDMA design, simulation and analysis using
Ptolemy software tools,” in Proc. IEEE Information, Communications and
Signal Processing, pp. 897-901, 2003.
[76] T. A. Rahman, and K. H. Puh, “Bit error rate measurement on WCDMA system
in multipath channel,” in Proc. IEEE Information and Communication
Technologies: From Theory to Applications, pp. 255-256, 2004.
[77] C.-L. Ho, J. Y. Wu and T.-S. Lee, “Group-wise V-BLAST detection in
multiuser space-time dual-signaling wireless systems,” IEEE Trans. Wireless
Communications, vol. 5, no. 7, pp. 1896-1909, July 2006.
[78] S. Sfar, R. D. Murch, and K. B. Letaief, “Layered space-time multiuser detection
over wireless uplink systems,” IEEE Trans. Wireless Communications,
vol. 2, pp. 653-668, July 2003.
[79] B. Golkar and F. Danilo-Lemoine, “Space-Time coding and spatial multiplexing
in MIMO multicarrier CDMA,” in Proc. IEEE 18th International
Symposium On Personal, Indoor and Mobile Radio Communications, pp. 1-5,
Sep. 2007.
[80] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, “Simplified
processing for high spectral efficiency wireless communications employing
multi-element arrays,” IEEE Journal on Selected Areas in Communications,
vol. 17, pp. 1841-1852, Nov. 1999.
[81] Y. J. Zhang and K. B. Letaief, “An efficient resource-allocation scheme for
spatial multiuser access in MIMO/OFDM systems,” IEEE Trans. Communications,
vol. 53, no. 1, pp. 107-116, Jan. 2005.
[82] X. Wang and H. V. Poor, Wireless Communication Systems. Pearson Edu.,
Inc., NJ, 2004.
[83] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for
Signal Processing. Prentice Hall, 2000.
[84] H. Huang, H. Viswanathan, and G. J. Foschini, “Multiple antennas in cellar
CDMA systems: Transmission, detection, and spectral efficiency,” IEEE
Trans. Wireless Communications, vol. 1, no.3, pp. 383-392, July 2002.
[85] M. Tan and Y. Bar-ness, “Performance comparison of the multi-code fixed
spreading length (MFSL) scheme and the variable spreading length (VSL)
scheme of multi-rate MC-CDMA,” in Proc. IEEE Int. Symp. Spread Spectrum
Technology Applications, pp. 108-112, 2002.
[86] M. Tan, P. Zong, and Y. Bar-ness, “Multi-rate access schemes for MCCDMA,”
Wireless Personal Communications, vol. 27, pp. 149-182, Nov. 2003.
[87] P.- W. Fu and K.- C. Chen, “Multi-rate multi-carrier CDMA with multiuser
detection for wireless multimedia communications,“ in Proc. IEEE Wireless
Communications Networking Conf., pp. 385-390, 2003.
[88] Z. Li and M. Latva-aho, “Nonblind and semiblind space-frequency multiuser
detection for multi-rate MC-CDMA systems,” IEEE Trans. Signal Processing,
vol. 54, no. 11, pp. 4393-4404, Nov. 2006.
[89] B. Yang and F. Danilo-Lemoine, “Performance of a decorrelator base successive
interference cancellation multiuser receiver fror asynchronous multirate
DS-CDMA system,” in Proc. IEEE Military Communications Conf., pp.
1115-1121, 2005.
[90] A. Sabharwal, U. Mitra and R. Moses,“MMSE receivers for multirate DSCDMA
systems,” IEEE Trans. on Communications, vol. 49, pp. 2184-2197,
Dec. 2001.
[91] T. Abrao and P. Jeszensky, “Successive parallel interference canceller for asynchronous
multirate DS-CDMA systems,” in Proc. IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.
2003-2005, Sept. 2002.
[92] C. S. Wijting, T. Ojanper‥a, M. J. Juntti, K. Kansanen, and R. Prasad,
“Groupwise serial multiuser detectors for multirate DS-CDMA,” in Proc.
IEEE Vehicular Techchnolog Conf., Houston, pp. 836-840, 1999.
[93] Z. Guo and K. B. Letaief, “Performance of VSG-CDMA and MC-CDMA in
multirate systems,” in Proc. IEEE Vehicular Techchnolog Conf., pp. 501-505,
2001.
[94] H. Holma and A. Toskala, WCDMA for UMTS-Radio Access for Third Generation
Mobile Communications, John Wiley. 2002.
[95] T. Ojanpera, R. Prasad and H. Harada, “Qualitative comparison of some
multiuser detector algorithms for wideband CDMA,” in Proc. IEEE Vehicular
Techchnolog Conf., pp. 46-50, 1998.
[96] U. Mitra, “Comparison of maximum-likelihood-based detection for two multirate
access schemes for CDMA signals,” IEEE Trans. Communications, vol.
47, pp. 64-77, Jan. 1999.
[97] J. Li, K. B. Letaief and Z. Cuo, “Reduced-complexity MAP-based iterative
multiuser detection for coded multicarrier CDMA systems,” IEEE Trans.
Communications, vol. 52, no. 11, pp. 1909-1915, Nov. 2004.
[98] J. Luo, K. Pattipati, P. Willett and G. Levchuk, “Optimal grouping algorithm
for a group decision feedback detector in synchronous CDMA communication,”
IEEE Trans. Communications, vol. 51, no. 3, pp. 341-346, Mar.
2003.
[99] S. Sfar and K. B. Letaief, “Group ordered successive interference cancellation
for multiuser detection in MIMO CDMA systems,” in Proc. IEEE Wireless
Communications Networking Conf., pp. 888-893, 2003.
[100] R. Fantacci, D. Marabissi, and S. Papini, “Multiuser interference cancellation
receivers for OFDMA uplink communications with carrier frequency offset,”
in Proc. IEEE GLOBECOM, pp. 2808-2812, 2004.
[101] F.-D Agostini, S. Carboni, M. de Castro, F. de Castro, and D. Von Trindade,
“Adaptive concurrent equalization applied to multicarrier OFDM systems,”
IEEE Trans. Broadcasting, vol. 54, no. 3, pp. 441-447, Sep. 2008.
[102] W. Zhang, X. Xia, and P. Chin, “Optimal training and pilot pattern design
for OFDM systems in Rayleigh fading,” IEEE Trans. Broadcasting, vol. 52,
pp. 505-514, Dec. 2006.
[103] W.-C. Huang, C.-H. Pan, C.-P. Li and H.-J. Li, “Subspace-based semi-blind
channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcasting,
vol. 56, pp. 58-65, Mar. 2010.
[104] X. Fu, H. Minn, and C. Cantrell, “Two novel iterative joint frequency offset
and channel estimation methods for OFDMA uplink,” IEEE Trans. Communications,
vol. 56, no. 3, pp. 474-484, Mar. 2008.
[105] M.-O. Pun, M. Morelli, and C. C. J. Kuo, “Maximum-likelihood synchronization
and channel estimation for OFDMA uplink transmission,” IEEE Trans.
Communications, vol. 54, no. 4, pp. 726-736, Apr. 2006.
[106] J. Choi, C. Lee, H. W. Jung, and Y. H. Lee, “Carrier frequency offset compensation
for uplink of OFDM-FDMA systems,” IEEE Communications Lett.,
vol. 4, no. 12, pp. 414-416, Dec. 2000.
[107] G. Liu and W. Zhu, “Compensation of phase noise in OFDM systems using
an ICI reduction scheme,” IEEE Trans. Broadcasting, vol. 50, no. 4, pp. 399-
407, Dec. 2004.
[108] O. Takyu, T. Ohtsuki and M. Nakagawa, “Frequency offset compensation
with MMSE-MUD for multi-carrier CDMA in quasi-synchronous uplink,” in
Proc. IEEE ICC, 4, pp. 2485-2489, May 2003.
[109] H.Wang, X. Chen, S. Zhou, M. Zhoa, and Y. Yao, “Low-complexity ICI cancellation
in frequency domain for OFDM systems in time-varying multipath
channels,” IEICE Trans. Communications, vol. E89-B, no. 3, pp. 1020-1023,
Mar. 2006.
[110] S.-U. Hwang, J.-H. Lee, and J. Seo, “Low complexity iterative ICI cancellation
and equalization for OFDM systems over doubly selective channels,”
IEEE Trans. Broadcasting, vol. 55, no. 1, pp. 132-139, Mar. 2009.
[111] C.-Y. Hsu and W.-R. Wu, “A low-complexity zero-forcing CFO compensation
scheme for OFDMA uplink systems,” IEEE Trans. Wireless Communications,
vol. 7, no. 10, pp. 3657-3661, Oct. 2008.
[112] Z. Cao, U. Tureli, Y.-D. Yao, and P. Honan, “Low complexity orthogonal
spectral signal construction for generalized OFDMA uplink with frequency
synchronization errors,” IEEE Trans. Vehicular Techchnolog., vol. 56, no. 3,
pp. 1143-1154, May 2007.
[113] R. Miao, J. Sun, L. Gui and J. Xiong, “An iterative interference cancellation
approach for OFDMA uplink system,” in Proc. IEEE Communications and
Mobile Computing, vol. 3, pp. 541-544, 2010.
[114] S. Ahmed and L. Zhang, “Low complexity iterative detection for OFDMA
uplink with frequency offsets,” IEEE Trans. Wireless Communications, vol.
8, no. 3, pp. 1199-1205, Mar. 2009.
[115] P. Schniter, “Low-complexity equalization of OFDM in doubly selective
channels,” IEEE Trans. Signal Processing, vol. 52, no. 4, pp. 1002-1010, Jan.
2004.
[116] D. Huang and K. B. Letaief, “An interference-cancellation scheme for carrier
frequency offsets correction in OFDMA systems,” IEEE Trans. Communications,
vol. 53, No. 7, pp. 1155-1165, July 2005.
[117] S. Manohar, D. Sreedhar, V. Tikiya, and A. Chockalingam, “Cancellation
of multiuser interference due to carrier frequency offsets in uplink OFDMA,”
IEEE Trans. Wireless Communications, vol. 6, no. 7, pp. 2560-2571, July
2007.
[118] T. Y‥ucek and H. Arslan, “Carrier frequency offset compensation with successive
cancellation in uplink OFDMA systems,” IEEE Trans. Wireless Communications,
vol. 6, no. 10, pp. 3546-3551, Oct. 2007.
[119] H. Lee, B. Lee, and I. Lee, “Iterative detection and decoding with an improved
V-BLAST for MIMO OFDM systems,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 3, pp. 504-513, Mar. 2006.
[120] J. G. Proakis, Digital Communications. 4th ed., McGraw-Hill, 2001.

QR CODE