簡易檢索 / 詳目顯示

研究生: 杜永枰
Yung-Ping Tu
論文名稱: 無線通訊系統中佐以軟式干擾刪除之接收器設計
On the Receiver Design With Soft Interference Cancellation in Wireless Communication Systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 廖弘源
Hong-Yuan Liao
張順雄
Shun-Hsyung Chang
賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 146
中文關鍵詞: 時空區塊碼空間多工廣義旁辦消除器最小均方差多使用者偵測
外文關鍵詞: multiuser detection, interference cancellation
相關次數: 點閱:246下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著用戶對品質要求日益增加,本論文之目的即在促進目前新興的無線通訊
    中將多使用者存取干擾去除。因此,本文嘗試提出多個軟式資訊輔助決策且高效
    能、低複雜度的多使用者偵測器,用以有效提昇各式不同無線通訊系統之干擾去
    除能力。
    本論文第一個論述在多輸入多輸出的系統下,針對Alamouti 時空區塊碼與
    空間多工結合系統提出一個時-空二階段軟式決策接收器。接收器之第一階段包
    括一組軟式廣義旁瓣消除器庫,用以針對傳送符元產生更精確的初始估測,第二
    階段則利用比對濾波器連續地以群遞方式將每個時空區塊碼所含的兩個符元同
    時偵測出來。
    本論文第二個論述是在多輸入多輸出的多重路徑上鏈路分碼多工(CDMA)
    系統下,針對異質訊號模式傳輸提出有效率的交替式多使用者偵測器,於此,資
    料傳送將採用空間多工或時-空區塊碼技術進行二擇一傳輸以獲得高速傳輸或傳
    送多樣性增益。此新接收器首先依傳輸模式分成兩群,然後再交替地將各群的訊
    號利用軟式資訊以疊代方式加強多使用者存取干擾去除能力。而且,為能實現實
    際的低複雜度,基於使用者間彼此的等效通道相關度,進一步地依將各群的使用
    者劃分成為人數較小的子群,然後再次利用最小均方差軟式偵測器庫且平行地將
    訊號偵測,以降低運算複雜度負擔。
    本論文第三個論述是將延伸的交替式多使用者偵測器,應用於上鏈路多速率
    多載波之單輸入多輸出的多重路徑CDMA 系統下,稱之為疊代群遞多使用者偵
    測器。此偵測器利用軟式資訊修正干擾的估測,以增強干擾去除能力。於此,使
    用者依傳輸速率進行分群,各群內的使用者依序將干擾可靠地估測後刪除之,再
    整群傳遞至下一群的偵測。而且,為能實現實際的低複雜度,再次利用第二個論
    述之切割方法,以降低運算負擔。
    本論文第四個論述進一步考慮載波頻率偏移 (CFO) 對上鏈路多重正交分頻
    多工(OFDMA)對符元偵測的影響,提出子空間拆解方法並利用資料既有結構,首
    先將干擾自訊號中分離,再拆解成錯誤決策傳遞及未偵策符元干擾項,然後於串
    列式干擾刪除拆架構下刪除,且透過軟式資訊更完整地將干擾刪除。同時為實現
    低複雜度,我们利用ICI 矩陣對角集中的結構只考慮主要干擾項,有效地實現低
    運算需求且效能只微量降低。
    此外,我們也對上述各個論述,進行計算機模擬與效能分析,結果也驗証了我們所提的軟式接收器,相較於之前的方法確實能夠提供明顯的效能增益及合理
    的複雜度。而且,針對此應用軟式資訊的接收器,我們包含有兩種極端狀況的討
    論,及公正地比較各偵測器複雜度負荷的正確性。


    To accommodate an ever increasing subscribers with prescribed quality of service(QoS), in this thesis, we propose several efficacious soft information-assisted multiuser detectors (MUDs) to reinforce the capability of interference cancellation under various emerging wireless communication systems. The investigation of this thesis includes the followings.
    First, we present a new space-time two-stage receiver with the assistance of
    soft information for the Alamouti space-time block code (STBC) and spatially multiplexing (SM) combined multiple-input multiple-output (MIMO) systems. The
    first stage of the receiver consists of a bank of soft generalized sidelobe canceller (GSC)-based detectors to yield an initial estimate of the transmitted symbols. The groupwise detection is then conducted successively in the second stage by using the matched filters (MFs) to simultaneously detect the two consecutive symbols in one STBC block with the removal of the soft interferences in between.
    Second, an alternating MUD (AMUD) for the uplink of heterogeneoussignaling
    MIMO code division multiple access (CDMA) systems over multipath
    fading channels is addressed, where the data are transmitted using either SM for high transmission rate or STBC for transmit diversity gains. The new MUD first separates users into two groups according to their transmission signaling schemes and then detects the transmitted symbols in each group alternately with the removal of iteratively refined soft information-assisted multiple access interference (MAI) to enhance the interference cancellation capability. Moreover, for practical low-complexity implementation, the users in each group are further partitioned into smaller subgroups based on their effective channel correlations and then detected in parallel by a bank of minimum mean-squared error (MMSE) soft detectors to further reduce the computational load.
    Third, an extension of the AMUD, referred to as iterative groupwise MUD
    (IGMUD), is considered for the uplink of multi-rate multi-carrier code division
    multiple access (MC-CDMA) systems. The IGMUD first classifies the users into
    separate groups according to their transmission rates. In each iteration, these
    groups of users are detected sequentially based on a set of group detectors with the removal of MAI group by group. For practical low-complexity implementation, a partitioning scheme similar as the above is also utilized to mitigate the computational overhead.
    Finally, we consider a novel subspace decomposition-based detection scheme
    with the assistance of soft information cancellation in the uplink of interleaved orthogonal frequency division multiple access (OFDMA) systems. By utilizing the inherent data structure, the interference is first separated with the desired symbol and then further decomposed into one caused by the decision errors and the other one by the undetected symbols in the successive interference cancellation (SIC) scheme. With such an ingenious interference decomposition along with the soft processing scheme, the new receiver can render more thorough interference cancellation, which in turn entails enhanced system performance. Moreover, for practical implementations, we also consider to only deal with the principal components of inter-carrier interference (ICI) to reduce the computational load. Conducted simulations results show that the developed receivers can offer significant performance improvement compared with previous works in various scenarios. The corresponding low-complexity implementations are, in particular, appealing for practical applications, since they require substantially lower computational overhead with only slight performance loss.

    Contents 1 Introduction 1 1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Some Related Enabling Techniques . . . . . . . . . . . . . . . . . . 5 1.2.1 Multiple Antenna Systems . . . . . . . . . . . . . . . . . . . 5 1.2.2 Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Soft Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 A Two-Stage Receiver With Soft Interference Cancellation for Space-Time Block Code and Spatial Multiplexing Combined Systems. . . . .19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Review of Previous Works . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Group Detection . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Group Layer Space Time Detection (GLST) . . . . . . . . . 23 2.3.3 Symbol Detection . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Two-Stage Receiver With Soft Interference Cancellation . . . . . . . 25 2.4.1 Proposed Two-Stage Soft Receiver . . . . . . . . . . . . . . 25 2.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . 33 2.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Alternating Multiuser Detection With Soft Interference Cancellation for Heterogeneous-Signaling MIMO CDMA Systems 50 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Alternating MUD and Low-complexity Implementation . . . . . . . 54 3.3.1 Proposed Soft Information Assisted MUD . . . . . . . . . . 55 3.3.2 Reduced-Complexity Implementation . . . . . . . . . . . . . 62 3.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 64 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Efficient Groupwise Multiuser Detection with Iterative Soft Interference Cancellation for Multi-Rate MC-CDMA 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Groupwise MUD and Practical Implementation . . . . . . . . . . . 80 4.3.1 Proposed Iterative Groupwise MUD . . . . . . . . . . . . . . 80 4.3.2 Reduced-Complexity Implementation . . . . . . . . . . . . . 86 4.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 90 4.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 A Novel Subspace Decomposition-based Detection Scheme with Soft Interference Cancellation for OFDMA Uplink 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3 Subspace Decomposition-Based Detection and Low-Complexity Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Proposed Subspace Decomposition-Based Soft Receiver . . . 104 5.3.2 Low-Complexity Implementation . . . . . . . . . . . . . . . 113 5.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 117 5.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 121 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Conclusions 129 6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 REFERENCE . . . . . . . . . .132 A Proof of (2.8) and (2.9) . . . . . . . . . .142 B Proof of (2.17) and (2.18) . . . . . . . . . .143 C Proof of (3.9) . . . . . . . . . .145

    [1] M. P. Metroka, “An introduction to narrowband AMPS,” Proc. IEEE Globe-
    Com, vol. 2, pp. 1463-1468, Dec. 1991.
    [2] J. Uddenfeldt, “Digital cellular-its roots and its future,” Proc. of IEEE, vol.
    86, pp. 1319-1324, July 1998.
    [3] J. Uddenfeldt, “GSM-European cellular goes digital,” IEE Review, vol.37, pp.
    253-257, July 1991.
    [4] V. K. Garg, IS-95 and CDMA2000. Prentice Hall, Upper Saddle River, NJ,
    2000.
    [5] T. Ojanpera and R. Prasad, “An overview of third-generation wireless personal
    communications: a European prospective,” Wireless Personal Communications,
    vol. 5, no. 6, pp. 59-65, Dec 1998.
    [6] M. W. Oliphant, “Third-generation wireless must wait for services to catch
    up,” IEEE Spectrum, vol. 39, pp. 14-16, June 2002.
    [7] H. Zhai, X. Chen, Y. Fang, “How well can the IEEE 802.11 wireless LAN
    support quality of service?,” IEEE Trans. Wireless Communications, vol. 4,
    pp. 3084-3094, Nov. 2005.
    [8] C. Huang, H.-H. Juan, M.-S. Lin, and C.-J. Chang, “Radio resource management
    of heterogeneous services in mobile WiMAX systems,” IEEE Wireless
    Communications, vol. 14, pp. 20-26, Feb. 2007.
    [9] H. Berndt, Towards 4G Technologies: Services with Initiative. John Wiley
    and Sons, Inc., 2008.
    [10] R. Steele, Mobile Radio Communicaitons. Pentech Press, London, 1992.
    [11] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper
    Saddle River, NJ: Prentice Hall, 2nd 2002.
    [12] W.-C. Jakes, Microwave mobile Communications. Wiley, New York, 1974.
    [13] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Communication
    Mag., vol. 35, pp. 126-133, Dec. 1997.
    [14] L. Hanzo, M. M‥unster, B. J. Choi, and T. Keller, OFDM and MC-CDMA.
    John Wiley and IEEE Press, 2003.
    [15] U. Ladebusch and C. A. Liss, “Terrestrial DVB (DVB-T): A broadcast technology
    for stationary portable and mobile use,” Proc. of IEEE, vol. 94, pp.
    183-193, Jan. 2006.
    [16] 802.16e: IEEE Standard for Local and Metropolitan Area Networks Part 16:
    Air Interface for Fixed and Mobile BroadbandWireless Access Systems Amendment
    for Physical and Medium Access Control Layers for Combined Fixed and
    Mobile Operation in Licensed Bands, IEEE P802.16e/D11, Sep. 2005.
    [17] C. Eklund, R. B. Marks, K. L. Stanwood and S. Wang, “IEEE Standard
    802.16: A technical overview of the wirelessMANTM air interface for broadband
    wireless access,” IEEE Communications Mag., vol. 40, pp. 98-107, June
    2002.
    [18] H. Holma and A. Toskala, LTE for UMTS-OFDMA and SC-FDMA Based
    Radio Access, John Wiley and Sons 2009.
    [19] Y. Sun, “Bandwidth-efficient wireless OFDM,” IEEE Journal on Selected Areas
    in Communications, vol. 19, pp. 2267-2278, Nov. 2001.
    [20] A. Seyedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM
    systems,” IEEE Trans. Vehicular Techchnolog., vol. 54, no. 1, pp. 198-210,
    Jan. 2005.
    [21] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
    Communications. Cambridge University press 2003.
    [22] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
    fading environment when using multiple antennas,” Wireless Personal Communications,
    vol. 6, pp. 311-335, 1998.
    [23] X. Bernstein and A. M. Haimovic, “Space-time processing for incrreased capacity
    of wireless CDMA,” in Proc. IEEE Int. Conf. Communications and
    Systems, pp. 597-601, 1996.
    [24] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
    tradeoff in multiple-antenna channels,” IEEE Trans. Information Theory, vol.
    49, no. 5, pp. 1073-1096, May 2003.
    [25] S. Alamouti, “A simple transmit diversity scheme for wireless communications,”
    IEEE Journal on Selected Areas in Communications, vol. 16, no. 8,
    pp. 1451-1458, Oct. 1998.
    [26] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high
    data rate wireless communication: Performance criterion and code construction,”
    IEEE Trans. Information Theory, vol. 44, pp. 744-765, Mar. 1998.
    [27] S. Baro, G. Bauch and A. Hansmann, “Improved codes for space-time trellis
    coded modulation,” IEEE Communications Lett., vol. 4, no. 1, pp. 20-22, Jan.
    2000.
    [28] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit errorcorrecting
    coding and decoding: turbo codes,” in Proc. of Inter. Conf. Communications
    (ICC), pp. 1064-1070, 1993.
    [29] G. J. Foschini, “Layered space-time architecture for wireless communication
    in a fading environment when using multi-element antennas,” Bell Labs Technical
    Journal, Autumn 1996.
    [30] G. D. Golden, G. J. Foschini, R. Valenzuela, and P. Wolniansky, “Detection
    algorithm and initial laboratory results using V-BLAST space-time communication
    architecture,” Electronocs. Lett., vol. 35, pp. 14-16, Jan. 1999.
    [31] S. Verdu, Multiuser Detection. Cambridge University Press, 1998.
    [32] A. Kapur and M. K. Varanasi, “Multiuser detection for overloaded CDMA
    systems,” IEEE Trans. Information Theory, vol. 49, pp. 1728-1742, July 2003.
    [33] S. Haykin, Communication Systems. John Wiley and Sons, Inc., 2001.
    [34] J. Dmochowski, J. Benesty and S. Affes, “Linearly constrained minimum variance
    source localization and spectral estimation,” IEEE Trans. Audio, Speech,
    and Language Processing, vol. 16, pp. 1490-1502, Aug. 2008.
    [35] W. Wang, Z. Xu, X. Wu and Q. Yin, “Optimal linear multiuser receiver in
    DS-CDMA system,” in Proc. Vehicular Technology Conf., pp. 527-531, 2001
    Spring.
    [36] T. -H. Liu, “Linearly constrained minimum variance filters for blind multiuser
    detection,” IEEE Trans. Communications, vol. 51, pp. 1649-1652, Oct. 2003.
    [37] H.-Y. Lu, W. H. Fang, Y.-T. Chen, and K. L. Yeh, “Heterogenous information
    aided semiblind group MUD for MIMO MC-CDMA system,” in Proc.
    Vehicular Technology Conf., pp. 730-734, Oct. 2007.
    [38] U. Madhow, “Blind adaptive interference suppression for the near-far resistant
    acquisition and demodulation of direct-sequence CDMA signals,” IEEE
    Trans. Signal Processing, vol. 45, pp. 124-136, Jan. 1997.
    [39] M. Souden, J. Benesty, S. Affes, “A study of the LCMV and MVDR noise
    reduction filters,” IEEE Trans. Signal Processing, vol. 58, pp. 4925-4935, Sep.2010.
    [40] O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,”
    Proc. IEEE, vol. 60, pp. 926-935, Aug. 1972.
    [41] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained
    adaptive beamforming,” IEEE Trans. Antennas Propagation, vol. 30, pp. 27-
    34, Jan. 1982.
    [42] V. K. Garg and A. Seshadri, “Performance improvement in wireless system
    due to parallel interference cancellation (PIC) algorithm,” in Proc. IEEE Personal
    Wireless Communications, pp. 243-249, Dec. 2002.
    [43] Y. D. Li and T. T. Tjhung, “Performance analysis of PIC-CDMA systems,”
    in Proc. IEEE Int. Conf. Communications and Systems, pp. 1086-1090, 2002.
    [44] S. Feng, H. Minn, L. Yan and L. Jinhui, “PIC-based iterative SDR detector for
    OFDM systems in doubly-selective fading channels,” IEEE Trans. Wireless
    Communications, vol. 9, pp. 86-91, Jan. 2010.
    [45] K. C. Lai and J. J. Shynk, “Performance evaluation of a generalized linear
    SIC for DS/CDMA signals,” IEEE Trans. Signal Processing, vol. 51, pp. 1604-
    1614, June 2003.
    [46] P. Patel and J. Holtzman, “Performance comparison of a DS/CDMA system
    using a successive interference cancellation (IC) scheme and a parallel IC
    scheme under fading,” in in Proc. of Inter. Conf. Communications (ICC),
    pp. 510-514, 1994.
    [47] D. Koulakiotis and A. H. Aghvami, “Evaluation of a DS/CDMA multiuser
    receiver employing a hybrid form of interference cancellation in Rayleighfading
    channels,” IEEE Communications Lett., vol. 2, pp. 61-63, Mar. 1998.
    [48] N. Kim and M. K. Howlader, “Analysis of a new hybrid interference cancellation
    (HIC) system,” in Proc. IEEE Wireless Communications Networking
    Conf., pp. 1828-1832, 2004.
    [49] A. Host-Madsen and K.-S. Cho, “MMSE/PIC multiuser detection for
    DS/CDMA systems with inter- and intra-cell interference,” IEEE Trans.
    Communications, vol. 47, pp. 291-299, Feb. 1999.
    [50] H.-Y. Lu and W.-H. Fang, “Decision aided hybrid MMSE/SIC multiuser detection:
    Structure and AME performance analysis,” IEICE Trans. Fundamentals,
    vol. E89-A, no. 2, pp. 600-610, Feb. 2006.
    [51] B. Vucetic and J. Yuan, Turbo codes principles and applications. Kluwer Academic Publishers, 2000.
    [52] J. Hagenauer, “Source-Controlled Channel Decoding,” IEEE Trans. Communications, vol. 43, no. 9, pp. 2449-2457, 1996.
    [53] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancellation and
    decoding for coded CDMA,” IEEE Trans. Communications, vol. 47, no.7, pp.
    1045-1061, July 1999.
    [54] J.-H. Ko, J.-S. Joo, and Y.-H Lee, “On the use of sigmoid functions for multistage
    detection in asynchronous CDMA systems,” IEEE Trans. Vehicular
    Technology, vol. 48, no. 2, pp. 522-526, Mar. 1999.
    [55] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
    Turbo codes,” IEEE Trans. Communications, vol. 44, pp. 1261-1271,
    Oct. 1996.
    [56] R. Koetter, A. C. Singer, and M. Tiiuchler, “Turbo equalization,” IEEE Signal
    Processing Mag., vol. 21, pp. 67-80, Jan. 2004.
    [57] H. V. Poor, “Itervative multiuser detection,” IEEE Trans. Signal Processing
    Mag., vol. 21, pp. 81-88, Jan. 2000.
    [58] P. D. Alexander and M. C. Reed, “Iterative multiuser interference reduction:
    turbo CDMA,” IEEE Trans. Communications, vol. 47, pp. 1008-1014, July.
    1999.
    [59] A. D. Damnjanovic and B. R. Vojcic, “Iterative multiuser detection/decoding
    for turbo coded CDMA systems,” IEEE Communications Lett., vol. 5, pp.
    104-106, Mar. 2001.
    [60] S. Haykin, Modern Wireless Communications, Pearson Education International,
    2005.
    [61] R. W. Heath Jr. and A. J. Paulraj, “Switching between diversity and multiplexing
    in MIMO systems,” IEEE Trans. Communications, vol. 3, no.6, pp.
    962-968, June 2005.
    [62] L. Zhao and V.K. Dubey, “Detection schemes for space-time block code and
    spatial multiplexing combined system,” IEEE Communications Lett., vol. 9,
    no. 1, pp. 49-51, Jan. 2005.
    [63] X.-N. Tran, H.-C. Ho, T. Fujino, and Y. Karasawa, “Performance comparison
    of detection methods for combined STBC and SM systems,” IEICE Trans.
    Communications, vol. 91, no. 6, pp. 1734-1742, Jun. 2008.
    [64] L. Dai, S. Sfar, and K. B. Letaief, “An efficient detector for combined spacetime
    coding and layered processing,” IEEE Trans. Communications vol. 53,
    no. 9, pp. 1438-1442, Sep. 2005.
    [65] J.-L. Yu, C.-L. Hung and I.-T. Lee, “A two-stage partially adaptive linear
    receiver for CDMA MIMO systems with Alamouti’s space-time block codes,”
    Digital Signal Processing, vol. 17, no. 8, pp. 244-260, Sep. 2006.
    [66] G. J. Foschini and M. J. Gans, “Layered space-time architecture for wireless
    communication in a fading environment when using multiple antennas,” Bell
    Labs Technical Jurnal, vol. 1, no. 2, pp. 41-59, 1996.
    [67] E.-A. Fain and M.-K. Varanasi, “Diversity order gain for narrow-band multiuser
    communications with pre-combining group detection,” IEEE Trans.
    Communications, vol. 48, no. 4, pp. 533-536, Apr. 2000.
    [68] Z. Tian, K.-L. Bell and H. L. Van Trees, “Robust constrained linear receivers
    for CDMA wireless systems,” IEEE Trans. Signal Processing, vol. 49, no. 7,
    pp. 1510-1522, July 2001.
    [69] M. F. Bugallo, J. M˙iguez and L. Castedo, “A maximum likelihood approach
    to blind multiuser interference cancellation,” IEEE Trans. Signal Processing,
    vol. 49, no. 6, pp. 1228-1239, June 2001.
    [70] H.-Y. Lu and W.-H. Fang, “Soft information assisted space-time multiuser
    detection for highly loaded CDMA,” IEEE Trans. Wireless Communications,
    vol. 8, no. 2, pp. 662-667, Feb. 2009.
    [71] D. N. Kalofonos and J. G. Proakis, “On the performance of coded low spreading
    gain DS-CDMA systems with random spreading in sequences multipath
    Rayleigh fading channels,” in Proc. IEEE Global Telecommunications Conf.,
    pp. 3247-3251, 2001.
    [72] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New
    York: McGraw-Hill, 2002.
    [73] M. Vehkaper‥a, D. Tujkovic, Zexian Li and M. Juntti, “Combined spatial multiplexing
    and diversity techniques for coded MC-CDMA systems with suboptimal
    MMSE-based receivers ,” in Proc. IEEE Vehicular Techchnolog Conf.,
    pp. 280-284, 2005.
    [74] G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed., Johns Hopkins
    University Press: Maryland, 1996.
    [75] L. Qian, and S. Berber, “3G WCDMA design, simulation and analysis using
    Ptolemy software tools,” in Proc. IEEE Information, Communications and
    Signal Processing, pp. 897-901, 2003.
    [76] T. A. Rahman, and K. H. Puh, “Bit error rate measurement on WCDMA system
    in multipath channel,” in Proc. IEEE Information and Communication
    Technologies: From Theory to Applications, pp. 255-256, 2004.
    [77] C.-L. Ho, J. Y. Wu and T.-S. Lee, “Group-wise V-BLAST detection in
    multiuser space-time dual-signaling wireless systems,” IEEE Trans. Wireless
    Communications, vol. 5, no. 7, pp. 1896-1909, July 2006.
    [78] S. Sfar, R. D. Murch, and K. B. Letaief, “Layered space-time multiuser detection
    over wireless uplink systems,” IEEE Trans. Wireless Communications,
    vol. 2, pp. 653-668, July 2003.
    [79] B. Golkar and F. Danilo-Lemoine, “Space-Time coding and spatial multiplexing
    in MIMO multicarrier CDMA,” in Proc. IEEE 18th International
    Symposium On Personal, Indoor and Mobile Radio Communications, pp. 1-5,
    Sep. 2007.
    [80] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, “Simplified
    processing for high spectral efficiency wireless communications employing
    multi-element arrays,” IEEE Journal on Selected Areas in Communications,
    vol. 17, pp. 1841-1852, Nov. 1999.
    [81] Y. J. Zhang and K. B. Letaief, “An efficient resource-allocation scheme for
    spatial multiuser access in MIMO/OFDM systems,” IEEE Trans. Communications,
    vol. 53, no. 1, pp. 107-116, Jan. 2005.
    [82] X. Wang and H. V. Poor, Wireless Communication Systems. Pearson Edu.,
    Inc., NJ, 2004.
    [83] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for
    Signal Processing. Prentice Hall, 2000.
    [84] H. Huang, H. Viswanathan, and G. J. Foschini, “Multiple antennas in cellar
    CDMA systems: Transmission, detection, and spectral efficiency,” IEEE
    Trans. Wireless Communications, vol. 1, no.3, pp. 383-392, July 2002.
    [85] M. Tan and Y. Bar-ness, “Performance comparison of the multi-code fixed
    spreading length (MFSL) scheme and the variable spreading length (VSL)
    scheme of multi-rate MC-CDMA,” in Proc. IEEE Int. Symp. Spread Spectrum
    Technology Applications, pp. 108-112, 2002.
    [86] M. Tan, P. Zong, and Y. Bar-ness, “Multi-rate access schemes for MCCDMA,”
    Wireless Personal Communications, vol. 27, pp. 149-182, Nov. 2003.
    [87] P.- W. Fu and K.- C. Chen, “Multi-rate multi-carrier CDMA with multiuser
    detection for wireless multimedia communications,“ in Proc. IEEE Wireless
    Communications Networking Conf., pp. 385-390, 2003.
    [88] Z. Li and M. Latva-aho, “Nonblind and semiblind space-frequency multiuser
    detection for multi-rate MC-CDMA systems,” IEEE Trans. Signal Processing,
    vol. 54, no. 11, pp. 4393-4404, Nov. 2006.
    [89] B. Yang and F. Danilo-Lemoine, “Performance of a decorrelator base successive
    interference cancellation multiuser receiver fror asynchronous multirate
    DS-CDMA system,” in Proc. IEEE Military Communications Conf., pp.
    1115-1121, 2005.
    [90] A. Sabharwal, U. Mitra and R. Moses,“MMSE receivers for multirate DSCDMA
    systems,” IEEE Trans. on Communications, vol. 49, pp. 2184-2197,
    Dec. 2001.
    [91] T. Abrao and P. Jeszensky, “Successive parallel interference canceller for asynchronous
    multirate DS-CDMA systems,” in Proc. IEEE International Symposium
    on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.
    2003-2005, Sept. 2002.
    [92] C. S. Wijting, T. Ojanper‥a, M. J. Juntti, K. Kansanen, and R. Prasad,
    “Groupwise serial multiuser detectors for multirate DS-CDMA,” in Proc.
    IEEE Vehicular Techchnolog Conf., Houston, pp. 836-840, 1999.
    [93] Z. Guo and K. B. Letaief, “Performance of VSG-CDMA and MC-CDMA in
    multirate systems,” in Proc. IEEE Vehicular Techchnolog Conf., pp. 501-505,
    2001.
    [94] H. Holma and A. Toskala, WCDMA for UMTS-Radio Access for Third Generation
    Mobile Communications, John Wiley. 2002.
    [95] T. Ojanpera, R. Prasad and H. Harada, “Qualitative comparison of some
    multiuser detector algorithms for wideband CDMA,” in Proc. IEEE Vehicular
    Techchnolog Conf., pp. 46-50, 1998.
    [96] U. Mitra, “Comparison of maximum-likelihood-based detection for two multirate
    access schemes for CDMA signals,” IEEE Trans. Communications, vol.
    47, pp. 64-77, Jan. 1999.
    [97] J. Li, K. B. Letaief and Z. Cuo, “Reduced-complexity MAP-based iterative
    multiuser detection for coded multicarrier CDMA systems,” IEEE Trans.
    Communications, vol. 52, no. 11, pp. 1909-1915, Nov. 2004.
    [98] J. Luo, K. Pattipati, P. Willett and G. Levchuk, “Optimal grouping algorithm
    for a group decision feedback detector in synchronous CDMA communication,”
    IEEE Trans. Communications, vol. 51, no. 3, pp. 341-346, Mar.
    2003.
    [99] S. Sfar and K. B. Letaief, “Group ordered successive interference cancellation
    for multiuser detection in MIMO CDMA systems,” in Proc. IEEE Wireless
    Communications Networking Conf., pp. 888-893, 2003.
    [100] R. Fantacci, D. Marabissi, and S. Papini, “Multiuser interference cancellation
    receivers for OFDMA uplink communications with carrier frequency offset,”
    in Proc. IEEE GLOBECOM, pp. 2808-2812, 2004.
    [101] F.-D Agostini, S. Carboni, M. de Castro, F. de Castro, and D. Von Trindade,
    “Adaptive concurrent equalization applied to multicarrier OFDM systems,”
    IEEE Trans. Broadcasting, vol. 54, no. 3, pp. 441-447, Sep. 2008.
    [102] W. Zhang, X. Xia, and P. Chin, “Optimal training and pilot pattern design
    for OFDM systems in Rayleigh fading,” IEEE Trans. Broadcasting, vol. 52,
    pp. 505-514, Dec. 2006.
    [103] W.-C. Huang, C.-H. Pan, C.-P. Li and H.-J. Li, “Subspace-based semi-blind
    channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcasting,
    vol. 56, pp. 58-65, Mar. 2010.
    [104] X. Fu, H. Minn, and C. Cantrell, “Two novel iterative joint frequency offset
    and channel estimation methods for OFDMA uplink,” IEEE Trans. Communications,
    vol. 56, no. 3, pp. 474-484, Mar. 2008.
    [105] M.-O. Pun, M. Morelli, and C. C. J. Kuo, “Maximum-likelihood synchronization
    and channel estimation for OFDMA uplink transmission,” IEEE Trans.
    Communications, vol. 54, no. 4, pp. 726-736, Apr. 2006.
    [106] J. Choi, C. Lee, H. W. Jung, and Y. H. Lee, “Carrier frequency offset compensation
    for uplink of OFDM-FDMA systems,” IEEE Communications Lett.,
    vol. 4, no. 12, pp. 414-416, Dec. 2000.
    [107] G. Liu and W. Zhu, “Compensation of phase noise in OFDM systems using
    an ICI reduction scheme,” IEEE Trans. Broadcasting, vol. 50, no. 4, pp. 399-
    407, Dec. 2004.
    [108] O. Takyu, T. Ohtsuki and M. Nakagawa, “Frequency offset compensation
    with MMSE-MUD for multi-carrier CDMA in quasi-synchronous uplink,” in
    Proc. IEEE ICC, 4, pp. 2485-2489, May 2003.
    [109] H.Wang, X. Chen, S. Zhou, M. Zhoa, and Y. Yao, “Low-complexity ICI cancellation
    in frequency domain for OFDM systems in time-varying multipath
    channels,” IEICE Trans. Communications, vol. E89-B, no. 3, pp. 1020-1023,
    Mar. 2006.
    [110] S.-U. Hwang, J.-H. Lee, and J. Seo, “Low complexity iterative ICI cancellation
    and equalization for OFDM systems over doubly selective channels,”
    IEEE Trans. Broadcasting, vol. 55, no. 1, pp. 132-139, Mar. 2009.
    [111] C.-Y. Hsu and W.-R. Wu, “A low-complexity zero-forcing CFO compensation
    scheme for OFDMA uplink systems,” IEEE Trans. Wireless Communications,
    vol. 7, no. 10, pp. 3657-3661, Oct. 2008.
    [112] Z. Cao, U. Tureli, Y.-D. Yao, and P. Honan, “Low complexity orthogonal
    spectral signal construction for generalized OFDMA uplink with frequency
    synchronization errors,” IEEE Trans. Vehicular Techchnolog., vol. 56, no. 3,
    pp. 1143-1154, May 2007.
    [113] R. Miao, J. Sun, L. Gui and J. Xiong, “An iterative interference cancellation
    approach for OFDMA uplink system,” in Proc. IEEE Communications and
    Mobile Computing, vol. 3, pp. 541-544, 2010.
    [114] S. Ahmed and L. Zhang, “Low complexity iterative detection for OFDMA
    uplink with frequency offsets,” IEEE Trans. Wireless Communications, vol.
    8, no. 3, pp. 1199-1205, Mar. 2009.
    [115] P. Schniter, “Low-complexity equalization of OFDM in doubly selective
    channels,” IEEE Trans. Signal Processing, vol. 52, no. 4, pp. 1002-1010, Jan.
    2004.
    [116] D. Huang and K. B. Letaief, “An interference-cancellation scheme for carrier
    frequency offsets correction in OFDMA systems,” IEEE Trans. Communications,
    vol. 53, No. 7, pp. 1155-1165, July 2005.
    [117] S. Manohar, D. Sreedhar, V. Tikiya, and A. Chockalingam, “Cancellation
    of multiuser interference due to carrier frequency offsets in uplink OFDMA,”
    IEEE Trans. Wireless Communications, vol. 6, no. 7, pp. 2560-2571, July
    2007.
    [118] T. Y‥ucek and H. Arslan, “Carrier frequency offset compensation with successive
    cancellation in uplink OFDMA systems,” IEEE Trans. Wireless Communications,
    vol. 6, no. 10, pp. 3546-3551, Oct. 2007.
    [119] H. Lee, B. Lee, and I. Lee, “Iterative detection and decoding with an improved
    V-BLAST for MIMO OFDM systems,” IEEE Journal on Selected
    Areas in Communications, vol. 24, no. 3, pp. 504-513, Mar. 2006.
    [120] J. G. Proakis, Digital Communications. 4th ed., McGraw-Hill, 2001.

    QR CODE