簡易檢索 / 詳目顯示

研究生: 林至偉
Chih-Wei Lin
論文名稱: 物聯網飲水機系統數位孿生應用
Digital Twin Application for IoT Water Dispenser System
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 任芳慶
Fang-Ching Ren
許獻聰
Shiann-Tsong Sheu
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 71
中文關鍵詞: 物聯網數位孿生模擬
外文關鍵詞: Internet of Things, Digital Twin, Simulation
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的設計與實作飲水機的數位孿生,先利用飲水機實體設備收集來的飲水機實體設備的原始資料進行校正,再輸入使用者行為給數位孿生進行模擬觀察溫度以及耗能量。透過改變數位孿生飲水機設定來了解欲觀測飲水機設備的行為,其應用包含: 1. 調整節能模式的排程觀測耗能變化,能在短時間內模擬並獲得長時間的數據變化,在數位孿生飲水機中調整並測試出較佳的飲水機實體設備設定再對實體機進行設定,也不再因為更動飲水機實體設備導致使用者使用上的不便。 2. 調整加熱器、冷卻壓縮機的啟動溫度,也能透過數位孿生飲水機先行模擬,並觀測用不同設定下電量的差異。


    The main purpose of this thesis is to design and implement a digital twin of the water dispenser system. First, use the raw data collected by the water dispenser physical equipment to calibrate it, and then input user behavior to the digital twin to simulate the temperature and energy consumption. By changing the settings of the digital twin water dispenser to understand the behavior of the water dispenser equipment to be observed, its applications include: 1. Adjust the schedule of the energy-saving mode to observe energy consumption changes, which can simulate and obtain long-term data changes in a short period of time. Adjusting and testing out the better physical equipment settings of the water dispensers in the twin water dispensers, and then setting the physical equipment will no longer cause inconvenience to the users due to changing the physical equipment of the water dispensers. 2. Adjust the start-up temperature of heaters and cooling compressors. It can also simulate in advance through a digital twin water dispenser and observe the difference in power consumption.

    Abstract V Acknowledgement VI Table of Contents VII List of Figures IX List of Tables XI 1. Introduction 1 1.1 Background of digital twin 4 1.2 Structure of physical water dispenser 6 1.2 Introduction to IoT-enabled water dispenser system 7 1.2.1 Data format 9 1.3 Basic operating principle of water dispensers 10 1.3.1 Standby Mode 10 1.3.2 Refilling Mode 11 1.3.3 Power-Saving Mode 12 1.3.4 Sterilizing Mode 13 1.3.5 Heating Mode 14 2. System Architecture 15 2.1 Functional Blocks Diagram 17 2.2 Flowchart 17 3. Modeling and Calibration 19 3.1 Modeling 19 3.1.1 Standby, Refilling, Sterilizing and Heating Mode 19 3.1.2 Power-Saving Mode 19 3.1.3 Water level 20 3.2 Calibration 21 3.2.1 Standby Mode 21 3.2.2 Refilling Mode 25 3.2.3 Power-Saving Mode 29 4. Scenarios for experimental results 33 4.1 Verify the accuracy of Digital Twin 33 4.2 Adjust the duration of power-saving mode 43 4.2.1 Adjust the duration in Standby mode 43 4.2.2 Adjust the duration in Power-Saving mode 47 4.3 Adjust the threshold temperature of heating 50 4.4 Adjust the threshold temperature of cooling 53 5. Conclusion 56 6. Reference 57

    [1] K. Ashton, ‘‘That Internet of Things thing,’’ RFID J., vol. 22, no. 7, pp. 97–114, Jun. 2009.
    [2] A. Canedo, ‘‘Industrial IoT lifecycle via digital twins,’’ in Proc. 11th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., 2016, p. 29.
    [3] E. A. Lee, “Cyber physical systems: Design challenges,” in Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on. IEEE, 2008, pp. 363–369.
    [4] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next computing revolution,” in Proceedings of the 47th Design Automation Conference. ACM, 2010, pp. 731–736.
    [5] Airframe Digital Twin [Online]. Available: https://adt.larc.nasa.gov/
    [6] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood, “Reengineering aircraft structural life prediction using a digital twin,” International Journal of Aerospace Engineering, vol. 2011, 2011.
    [7] E. H. Glaessgen and D. Stargel, “The digital twin paradigm for future nasa and us air force vehicles,” in 53rd Struct. Dyn. Mater. Conf. Special Session: Digital Twin, Honolulu, HI, US, 2012, pp. 1–14.
    [8] A. Cerrone, J. Hochhalter, G. Heber, and A. Ingraffea, “On the effects of modeling as-manufactured geometry: Toward digital twin,” International Journal of Aerospace Engineering, vol. 2014, 2014.
    [9] J. Lee, B. Bagheri, and H.-A. Kao, ‘‘A cyber-physical systems architecture for industry 4.0-based manufacturing systems,’’ Manuf. Lett., vol. 3, pp. 18–23, Jan. 2015.
    [10] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, ‘‘A survey on platoon-based vehicular cyber-physical systems,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 263–284, 1st Quart., 2016.
    [11] K. M. Alam and A. El Saddik, "C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems," in IEEE Access, vol. 5, pp. 2050-2062, 2017, doi: 10.1109/ACCESS.2017.2657006.
    [12] B. R. Barricelli, E. Casiraghi and D. Fogli, "A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications," in IEEE Access, vol. 7, pp. 167653-167671
    [13] NASA. The Ill-Fated Space Odyssey of Apollo 13. Accessed: Oct. 16, 2019. [Online]. Available: https://er.jsc.nasa.gov/seh/pg13.htm
    [14] Siemens (2020, Apr. 14). Apollo 13: The First Digital Twin [Online]. Available: https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/
    [15] M. Grieves. (2015). Digital Twin: Manufacturing Excellence Through Virtual Factory Replication. Digital Twin White Paper. Accessed: Oct. 16, 2019. [Online]. Available: https://research.fit.edu/media/site- specific/researchfitedu/camid/documents/1411.0_Digital_Twin_White_ Paper_Dr_Grieves.pdf
    [16] M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. Springer, 2017, pp. 85–113
    [17] W. Kritzinger, M. Karner, G. Traar, J. Henjes and W. Sihn, "Digital twin in manufacturing: A categorical literature review and classification", IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016-1022, 2018.
    [18] S. Boschert and R. Rosen, "Digital twin—The simulation aspect" in Mechatronic Futures, Basel, Switzerland:Springer, pp. 59-74, 2016.
    [19] E. Negri, L. Fumagalli and M. Macchi, "A review of the roles of digital twin in CPS-based production systems", Procedia Manuf., vol. 11, pp. 939-948, 2017.
    [20] Q. Qi and F. Tao, "Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison," in IEEE Access, vol. 6, pp. 3585-3593
    [21] J. Hochhalter et al., Coupling Damage-Sensing Particles to the Digital Twin Concept, Jan. 2018, [online] Available: https://ntrs.nasa.gov/search.jsp?R=20140006408.
    [22] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang and F. Sui, "Digital twin-driven product design manufacturing and service with big data", Int. J. Adv. Manuf. Technol., Mar. 2017.
    [23] A. Rasheed, O. San and T. Kvamsdal, "Digital Twin: Values, Challenges and Enablers From a Modeling Perspective," in IEEE Access, vol. 8, pp. 21980-22012
    [24] S. Scharff. (Sep. 10, 2010). From Digital Twin to Improved Patient Experience. Siemens Healthineers. Accessed: Oct. 16, 2019. [Online]. Available: https://www.corporate.siemens-healthineers.com/perspectives/mso-digital-twin-mater.html
    [25] 賀眾牌ACUO [Online]. Available: https://9000.com.tw/
    [26] W. Z. Cheng, R. G. Cheng, and S. Y. Chou, “Power-saving for IoT-enabled water dispenser system,” 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, July 1-3, 2019
    [27] Xu-Kang Wu., “Implementation of Data Distribution Service on IoT-enabled Water Dispenser System,” M.S. thesis, Electronic and Computer Engineering Dept. NTUST., Taiwan, 2020. Accessed on: 08, 07, 2020. Available: https://hdl.handle.net/11296/36aa3f
    [28] Yu-Ting Cheng., “Estimating Drinking Water Consumption of IoT Dispenser System,” M.S. thesis, Electronic and Computer Engineering Dept. NTUST., Taiwan, 2019. Accessed on: 26, 07, 2019. Available: https://hdl.handle.net/11296/x282m5
    [29] Roger Jang (2015, July 26). Linear regression: curve fitting [Online]. Available:http://mirlab.org/jang/books/matlabprogramming4guru/10-1_regressionLin4curveFitting.asp?title=10-1%20%BDu%A9%CA%B0j%C2k%A1G%A6%B1%BDu%C0%C0%A6X
    [30] Jason Brownlee (2020, Nov. 4). Curve Fitting With Python [Online]. Available: https://machinelearningmastery.com/curve-fitting-with-python/

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 2024/08/16 (校外網路)
    全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE