簡易檢索 / 詳目顯示

研究生: 陳世斌
Shih-bin Chen
論文名稱: 自主調頻壓電樑能量擷取系統之設計與研究
A Design and Study of an Autonomous Self-Tuning PZT Beam on Power Harvesting Systems
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 楊條和
Tyau-Her Young
胡毓忠
Yuh-Chung Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 壓電能量擷取振能回收自主調頻接納法
外文關鍵詞: autonomous self-tuning
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用具力電轉換特性的壓電材料(PZT)作為振能回收之媒介,期能研發一自主調頻的壓電樑能量擷取系統(Piezoelectric vibration power harvesting systems),以達成最大振能回收之功效。壓電樑能量擷取系統係由一具部份貼覆PZT之懸臂樑與一可經馬達驅動之中間支撐組合而成。吾人首先分析壓電懸臂樑獨立之機械特性,並加入力電耦合效應,以假設模態法求得系統的運動方程式。續應用接納法將壓電懸臂樑與中間支撐結合,導出整個能量擷取系統之固有頻率與中間支撐位置之函數關係。
研究中實際製作一自主調頻壓電樑能量擷取系統,當系統受到一外在頻率的激發,貼覆於樑上的PZT會產生一相對應的電壓,經由壓電材料產生之交流電壓,偵測出此電壓的頻率,系統經由已建立的資料庫,尋得支撐的最佳位置,計算所需脈波數並傳送至馬達,推動支撐至指定位置。由於壓電的磁滯效應及其它未定因素,當支撐移動至指定位置後未必是壓電材料輸出最大值,因此系統必須根據壓電材料產生的電壓大小進行微調,使得能量擷取系統的固有頻率能與外在頻率吻合共振,以獲得最大的振能回收效益。
此設計概念頗具創新性,理論模擬與實體量測的固有頻率誤差甚小,足可驗證理論的正確性,再者經由實體測試觀察出可調整的頻率範圍高53%以上,適可提供未來設計振能回收系統的工程人員一參考方向。


In this study, utilizing piezoelectric material(PZT) as a transformer between mechanical and electrical energy, an autonomous self-tuning power harvesting system has been developed for maximum power harvesting .The power harvesting system is composed of partially covered PZT patches on a cantilever beam and there is an adjustable intermediate support in between. Via adjusting the support location the beam vibrates at its resonant state so that maximizes the vibration power harvest.
In theoretical analysis, the electro-mechanical coupling effect of the PZT energy is included. Assumed mode method is then employed to yield the Lagrange’s equation of motion.The receptance method is applied to join the intermediate support and eventually yields the frequency equation.
An autonomous self-tuning PZT beam power harvesting system is set up for experimental work. When the system is stimulated with an external frequency, the PZT will generate a corresponding alternating voltage .By sensing the frequency of the voltage, the system references the established data base and then sends pulses to the motor to move support to an appropriate location.This system also has the ability of fine-tuning so that it yields the maximum power harvesting.
This concept of the research is quite innovative, and the theortical modeling and experimental results of the natural frequencies show precise agreement.The designed mechanism can adjust the frequency range up to 53% or more and it is believed to provide the engineers a valuable reference in power harvesting.

摘 要 I ABSTRACT III 誌謝 IV 目錄 VI 圖索引 IX 表索引 XII 符號索引 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 本文架構 10 第二章 壓電理論 12 2.1 壓電原理 12 2.2 壓電效應 14 2.3 極化處理 16 2.4 壓電材料本構方程式 17 第三章 自主調頻壓電懸臂樑之模型建立與振動分析 20 3.1 壓電樑之運動方程式 20 3.2 假設模態法 25 3.3 運動方程式 28 3.4 接納法理論(Receptance Method) 30 3.4.1 壓電懸臂樑之穩態響應 33 3.4.2 壓電懸臂樑之接納度 34 3.4.3 夾持裝置於不同位置下之分析 37 第四章 實驗架設與量測結果 40 4.1 實驗儀器設備 40 4.2 壓電樑之共振頻率量測與結果探討 47 4.2.1 實驗架構及測量方式 47 4.2.2 量測結果與討論 50 4.3 LabVIEW介紹 55 4.4 自主調頻機構模組之設計 58 4.5 研發一自主調頻能量擷取系統 61 4.5.1 自主調頻能量擷取系統之共振頻率量測 62 4.5.2 結果與分析 67 4.5.3 系統頻率之調整 70 4.5.4 壓電材料之響應時間 71 4.5.5 自主調頻能量擷取系統之實現 72 第五章 結論與未來研究方向 76 5.1 結論 76 5.2 未來展望 79 參考文獻 81 作者簡介 85

[1] Wu, W. J. , Chen, Y.Y., Lee, B. S., He, J. J. and Peng, Y. T., 2006, “Tunable Resonant Frequency Power Harvesting Devices,” Proceedings of Smart Structures and Materials, Vol.6169, pp.55-62.
[2] Challa, V. R., Prasad, M. G., Shi, Y. and Fisher, F.T., 2008, “A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tenability,” Smart Materials and Structures, Vol.17, pp.15-35.
[3] 吳哲豪, 2009, “可調整壓電樑之模型推導與振能回收研究,” 國立台灣科技大學機械工程研究所碩士論文, pp.23-29.
[4] 陳昱竹, 2010, “動調頻外伸壓電樑於振能回收之研究,” 國立台灣科技大學機械工程研究所碩士論文, pp.22-31.
[5] Wischke, M., Masur, M., Goldschmidtboeing, F., 2010, “Piezoelectrically tunable electromagnetic vibration harvest,” Laboratory for Design of Microsystems University of Freiburg, pp.1199-1202.
[6] Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C., 2005, “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing,” IEEE Transactions on Ultrasonics Ferroelectrics, and Frequency Control, Vol.52, pp.584-594.
[7] 莊政縉, 2008, “壓電振動能量擷取器在標準介面與SSHI介面之分析,”國立台灣大學工學院應用力學研究所碩士論文, pp.9-18.
[8] J Kymissis., Kendall, C., Paradiso, J.,Gershenfeld, N., 1998, “Parasitic Power Harvesting in Shoes,” Presented at The Second IEEE International Conference on Wearable Computing, pp.132-139.
[9] Priya, Shashank, Inman, Daniel J. (Eds.), 2009, “Energy Harvesting Technologies,” Springer.
[10] 周卓明, 2003, “壓電力學,” 全華科技圖書股份有限公司.
[11] 吳朗, 1994, “電子陶瓷:壓電陶瓷,” 全欣資訊圖書.
[12] JOHN WIELY & SONS, INC, 2007, “VIBRATION OF CONTINUOUS SYSTEMS,”pp.325-336.
[13] R.E.D BISHOP, And D.C JOHNSON, “The Mechanics of Vibration,” pp.21-31.
[14] 蕭子健,儲昭偉,王智昱., 2003, “LabVIEW進階篇,” 高立圖書公司.
[15] 北京中科泛華測控技術有限公司., 2003, “電腦虛擬儀控圖形編程 LabVIEW實驗教材,”.
[16] National Instrument[NI], 2006, “Control Design Toolkit User Manual,” LabVIEW.
[17] National Instrument[NI], 2006, “Simulation Module User Manual,” LabVIEW.
[18] 惠汝生., 2006, “LabVIEW 8.X圖控程式應用,” 全華圖書有限公司.
[19] 林傑斌,林清源,林德容, 2004, “LabVIEW 從入門到精通,” 文魁資訊出版社.
[20] 林穀欣, “LabVIEW基礎程式設計及應用-3Edition,” 全華科技圖書股份有限公司.
[21] Roundy, S., Leland E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K., V.Sundararajan,2005, “Improving power output for vibrationbasedenergy scavengers,” Pervasive Computing, Vol. 4, pp.28-36 .
[22] Leland, E. S., Wright, P. K., 2006, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload,” Smart Mat. Struct., Vol. 15, pp.1413-1420.
[23] Eichhorn, C., Goldschmidtboeing, F., Woias, P., 2009, “A frequency tunable energy converter based on a cantilever beam,” J. Micromech. Microeng.,094006.
[24] Roundy S, Leland E S and Baker J 2005 Improving power output for vibration-based energy scavengers IEEE.,Vol. 4, pp. 28-36
[25] Roundy, S., Zhang, Y., 2005, “Toward self-tuning adaptive vibration based micro-generators,” SPIE Proc. Of Smart structures , devices and systems, Vol. 5649, pp.373-384.
[26] IEEE Standard on Piezoelectricity, 1987, ANSI Standard.
[27] Wischke, M., Masur, M., Goldschmidtboeing, F., Woias, P., 2009, “Resonance tunability of clamped-free piezoelectric cantilevers,” J. Micromech. Microeng, 125020.
[28] Challa, V. R., Prasad, M. G. and Fisher, F.T., 2011, “Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications,” Smart Materials and Structures, Vol.20, pp.025004.

無法下載圖示 全文公開日期 2016/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE