簡易檢索 / 詳目顯示

研究生: 吳浩榳
Hao -Ting Wu
論文名稱: 透過暫態光電壓與暫態光電流量測技術研究鈣鈦礦太陽能電池的載子動力學
Investigating the Carrier Dynamics of Perovskite Solar Cells by Transient Photovoltage and Transient Photocurrent Measurements
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳昭宇
Chao-Yu Chen
徐旭政
Hsu-Cheng Hsu
李奎毅
LEE, Kuei-Yi
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 鈣鈦礦載子動力學暫態光電壓暫態光電流微分電容
外文關鍵詞: Perovskite, Carrier Dynamics, Transient Photovoltage, Transient Photocurrent, Defferential Capacitance
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文透過暫態光電壓(Transient phtovoltage簡稱TPV )及暫態光電流(Transient phtocurrent簡稱TPC)量測技術以探討鈣鈦礦太陽能電池的載子動力學。首先第一部分,透過TPV量測技術量測出MAPbI3 、 FACsPbI3和FACsPbI3+CsCOOH三種鈣鈦礦太陽能電池的載子活期,在一個太陽光強度下其載子活期分別為384、657和743 ns。其中FACsPbI3+CsCOOH元件具有較高的載子活期和短路電流密度(Jsc),顯示出加了擬鹵化物甲酸銫的FACsPbI3具有較好的結構品質以及較少的非輻射複合中心缺陷的影響。在小於一個太陽光強度下觀察到兩階段的TPV衰減行為,較快的衰減時間歸因於自由載子的複合,較慢的部分則是因為離子遷移影響複合速率所造成。另外也針對了離子種類與離子在鈣鈦礦層內遷移做了詳細的討論。
    第二部分利用TPC量測技術量測出電荷提取時間,其中FACsPbI3及FACsPbI3+CsCOOH元件顯示出較短的提取時間,暗示具有較短的電荷傳輸時間或較快的電荷傳輸。再結合TPV及TPC的實驗結果所進行的微分電容分析可以得到鈣鈦礦層內的電荷載子密度,相對於MAPbI3 (3.721015 cm-3)和FACsPbI3 (8.081015 cm-3)的電荷載子密度,FACsPbI3+CsCOOH具有較高的電荷載子密度(1.45×〖10〗^16 cm-3)。最後再透過載子活期與相對應的電荷載子密度作圖分析可得反應級數Φ,結果顯示FACsPbI3+CsCOOH具有最低的複合率和缺陷密度。總結TPV和TPC的實驗結果,加了擬鹵化物甲酸銫的FACsPbI3成功改善了其載子活期及傳輸時間,也因此獲得較高的光電轉換效率。


    Transient photovoltage (TPV) and transient photocurrent (TPC) measurement techniques were used to investigate carrier dynamics of perovskite solar cells. In the first section, carrier lifetime were measured by TPV for three different perovskite materials including MAPbI3, FACsPbI3 and FACsPbI3+CsCOOH cells. Carrier lifetimes of the three perovskite solar cells under one sun light intensity are 384, 657, and 743 ns, respectively. The FACsPbI3+CsCOOH cell with longer carrier lifetime is consistent with the higher short-circuit current (Jsc), which indicates better crystalline quality and less non-irradiative centers compared to other devices. A two-step TPV decay was observed at lower light intensity condition. The rapid and slow decay processes are attributed to the free carrier recombination and ion immigration respectively.
    For the second part, carrier extraction time was measured and analyzed by TPC. The FACsPbI3 and FACsPbI3+CsCOOH cells still exhibits shorter charge extraction time, which implies shorter charge transit time or faster carrier transport. Differential capacitance analysis further confirmed a higher charge carrier density at 1.451016 cm-3 of FACsPbI3+CsCOOH compared to the values at 3.721015 cm-3 of MAPbI3, and 8.081015 cm-3 of FACsPbI3. The carrier lifetime versus charge carrier density plot also indicates the FACsPbI3+CsCOOH cell with lower recombination rate and lower defect density. Overall the TPV and TPC investigation manifest that cesium formate doping successfully improve carrier lifetime, charge transport, and thus photoelectric conversion efficiency in FACsPbI3 solar cells.

    中文摘要 1 Abstract 2 致謝 3 目錄 4 圖目錄 6 表目錄 9 第一章 緒論 10 1.1 研究背景 10 1.2 太陽能電池特性 12 1.2.1 空氣質量 12 1.2.2 Shockley – Queisser Theory 13 1.3 太陽能電池種類 14 1.3.1 第一代晶圓太陽能電池 14 1.3.2 第二代薄膜太陽能電池 15 1.3.3 第三代新興薄膜太陽能電池 16 1.3.4 鈣鈦礦太陽能電池(Perovskite Solar Cell) 16 1.4 研究動機 18 第二章、元件介紹 19 2.1 MAPbI3鈣鈦礦太陽能電池 19 2.1.1 材料簡介 (Materials Introduction) 19 2.1.2 FTO/TiO2/SnO2/MAPbI3/spiro-OMeTAD/Au 20 2.2 FACsPbI3鈣鈦礦太陽能電池 21 2.2.1 材料簡介 (Materials Introduction) 21 2.2.2 FTO/TiO2/SnO2/FACsPbI3/spiro-OMeTAD/Au 23 2.3 FACsPbI3+CsCooh擬鹵化物鈣鈦礦太陽能電池 24 2.3.1 材料簡介 (Materials Introduction) 24 2.3.2 FTO/TiO2/SnO2/FACsPbI3+CsCOOH/spiro-OMeTAD/Au 24 第三章 實驗方法與原理 26 3.1 鈣鈦礦太陽能電池工作原理(Principle of Solar Cells) 26 3.1.1 pn接面太陽能電池(pn junction solar cell) 27 3.2 暫態光電壓工作原理(Principle of Transient Photovoltage) 29 3.2.1 暫態光電壓與照光下的電流密度之關係 33 3.3 暫態光電流與微分電容原理(Principle of Transient Photocurrent and Differential Capacitance) 36 3.3.1 暫態光電流(Transient Photocurrent) 36 3.3.2 微分電容分析 (Differential Capacitance Analysis) 39 3.4 電壓對電流特性量測系統 40 3.4.1 填充因子(Fill Factor , FF) 40 3.4.2 轉換效率(Photoelectric Conversion Efficiency , PCE) 41 3.5 暫態光電壓量測系統(Transient Photovoltage Measurement) 42 3.6 暫態光電流量測系統 43 第四章、結果與討論 45 4.1 鈣鈦礦太陽能電池之暫態光電壓分析 45 4.1.1 不同鈣鈦礦層之間之TPV比較 46 4.1.2不同光偏壓下載子活期(τΔn)的量測 52 4.2 鈣鈦礦太陽能電池之暫態光電流分析 57 4.3 鈣鈦礦太陽能電池之微分電容之分析 63 第五章 結論 69 參考資料 70

    [1] P. R. Wolfe, “What Is Photovoltaics?”, Wiley-IEEE Press, 9-24. (2018).
    [2] Fritts, C. E. "On a New Form of Selenium Photocell". American Journal of Science. 26: 465. (1883).
    [3] The National Renewable Energy Laboratory, “Best Research-Cell Efficiency Chart”, Photovoltaic Research Publications. (2020).
    [4] M. Thirugnanasambandam, S. Iniyan, R Goic , “A review of solar thermal technologies”, Elsevier, 41 (1), 312-322. (2010).
    [5] http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
    [6] Rühle, Sven. "Tabulated values of the Shockley–Queisser limit for single junction solar cells." Solar energy 130: 139-147. (2016).
    [7] K. Ranabhat, L. Patrikeev, A. Antal'evna- Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, “An introduction to solar cell technology”, Journal of Applied Engineering Science, 14, 481-491. (2016).
    [8] T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production”, NPG Asia Materials, 2, 96-102. (2010).
    [9] 索比光伏網2017-12-25薄膜太陽能電池知多少。(2017)
    [10] A.K. Shukla, K. Sudhakar, P. Baredar, “A comprehensive review on design of building integrated photovoltaic system”, Energy Build, 128, 99-110. (2016).
    [11] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), 6050-6051. (2009).
    [12] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7. (2012).
    [13] Min, H., Kim, M., Lee, S. U., Kim, H., Kim, G., Choi, K., ... & Seok, S. I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366(6466), 749-753. (2019).
    [14] Yun, J. S., Seidel, J., Kim, J., Soufiani, A. M., Huang, S., Lau, J., ... & Ho‐Baillie, A. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Advanced Energy Materials, 6(13), 1600330. (2016).
    [15] Dong, P., Yuan, S., Zhu, D., Du, Y., Mu, C., & Ai, X. C. Electron transport layer assisted by nickel chloride hexahydrate for open-circuit voltage improvement in MAPbI 3 perovskite solar cells. RSC advances, 12(22), 13820-13825. (2022).
    [16] Abudulimu, A., Sandoval-Torrientes, R., Zimmermann, I., Santos, J., Nazeeruddin, M. K., & Martín, N. Hole transporting materials for perovskite solar cells and a simple approach for determining the performance limiting factors. Journal of Materials Chemistry A, 8(3), 1386-1393. (2020).
    [17] Juarez-Perez, E. J., Ono, L. K., & Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. Journal of Materials Chemistry A, 7(28), 16912-16919. (2019).
    [18] Sutton, R. J., Eperon, G. E., Miranda, L., Parrott, E. S., Kamino, B. A., Patel, J. B., ... & Snaith, H. J. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Advanced Energy Materials, 6(8), 1502458. (2016).
    [19] Thote, A., Jeon, I., Lee, J.-W., Seo, S., Lin, H.-S., Yang, Y., Daiguji, H., Maruyama, S., & Matsuo, Y. Stable and Reproducible 2D/3D Formamidinium–Lead–Iodide Perovskite Solar Cells. ACS Applied Energy Materials, 2(4), 2486-2493. (2019).
    [20] Lu, H., Liu, Y., Ahlawat, P., Mishra, A., Tress, W. R., Eickemeyer, F. T., ... & Grätzel, M. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 370(6512), eabb8985. (2020).
    [21] Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M. A., Eickemeyer, F. T., Kim, M., Yoon, Y. J., Choi, I. W., Darwich, B. P., Choi, S. J., Jo, Y., Lee, J. H., Walker, B., Zakeeruddin, S. M., Emsley, L., . . . Kim, J. Y. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592(7854), 381-385. (2021).
    [22] 周瑾璟, 鍾敏. 鉛鹵鈣鈦礦太陽能電池界面工程的近期進展[J]. 複合材料學報, 39(5): 1937-1955 (2022)
    [23] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, McGraw-Hill College, 4th edition. (2012).
    [24] C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello, J. R. Durrant, “Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell”, Appl. Phys. Lett., 92 (9), 093311. (2008).
    [25]A. Maurano, C. G. Shuttle, R. Hamilton, A. M. Ballantyne, J. Nelson, W. Zhang, M. Heeney, J. R. Durrant, “Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene Fullerene Blend Solar Cell”, The Journal of Physical Chemistry C, 115 (13), 5947–5957. (2011).
    [26] A. Foertig, A. Baumann1, D. Rauh, V. Dyakonov, C. Deibel, “Charge Carrier Concentration and Temperature Dependent Recombination in Polymer-Fullerene Solar Cells”, Appl. Phys. Lett., 95 (5), 052104. (2009).
    [27] A. Maurano, C. G. Shuttle, R. Hamilton, A. M. Ballantyne, J. Nelson, W. Zhang, M. Heeney, J. R. Durrant, “Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene Fullerene Blend Solar Cell”, The Journal of Physical Chemistry C, 115 (13), 5947–5957. (2011).
    [28] J. W. Ryan, E. Palomares, “Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the Influence of Film Nanomorphology”, Advanced Energy Materials, 7 (10), 1601509. (2017).
    [29] A. K. Thakur, H. Baboz1, G. Wantz, J. Hodgkiss, L. Hirsch, “Relation between charge carrier density and lifetime in polymer-fullerene solar cells”, Journal of Applied Physics, 112 (4), 044502. (2012).
    [30] T. M. Clarke, C. Lungenschmied, J. Peet, N. Drolet, A. J. Mozer, “A Comparison of Five Experimental Techniques to Measure Charge Carrier Lifetime in Polymer-Fullerene Solar Cells”, Advanced Energy Materials, 5 (4), 1401345. (2014).
    [31] A. K. Thakur, H. Baboz1, G. Wantz, J. Hodgkiss, L. Hirsch, “Relation between charge carrier density and lifetime in polymer-fullerene solar cells”, Journal of Applied Physics, 112 (4), 044502. (2012).
    [32] S. K. Hwang, J. H Park, K. B. Cheon, S. W. Seo, J. E. Song, I. J. Park, S. G. Ji, M. A. Park, J. Y. Kim, “Improved interfacial properties of electrodeposited Cu2ZnSn (S,Se)4 thin-film solar cells by a facile post-heat treatment process”, Progress in Photovoltaics, 28 (12), 1345-1354. (2020).
    [33] Palomares, E., Montcada, N. F., Méndez, M., Jiménez-López, J., Yang, W., & Boschloo, G. Photovoltage/photocurrent transient techniques. In Characterization Techniques for Perovskite Solar Cell Materials (pp. 161-180). Elsevier. (2020).
    [34]劉芳辰, “太陽能電池之暫態光電壓與光電流”國立台灣科技大學應用科技所碩士學位論文(2021)
    [35] Li, Y., Shi, J., Yu, B., Duan, B., Wu, J., Li, H., Li, D., Luo, Y., Wu, H., & Meng, Q. Exploiting electrical transients to quantify charge loss in solar cells. Joule, 4(2), 472-489. (2020).
    [36] Abudulimu, A., Sandoval-Torrientes, R., Zimmermann, I., Santos, J., Nazeeruddin, M. K., & Martín, N. Hole transporting materials for perovskite solar cells and a simple approach for determining the performance limiting factors. Journal of Materials Chemistry A, 8(3), 1386-1393. (2020).
    [37] Du, T., Kim, J., Ngiam, J., Xu, S., Barnes, P. R. F., Durrant, J. R., & McLachlan, M. A. Elucidating the Origins of Subgap Tail States and Open-Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials, 28(32), 1801808. (2018).
    [38] Liu, J., Hu, M., Dai, Z., Que, W., Padture, N. P., & Zhou, Y. Correlations between Electrochemical Ion Migration and Anomalous Device Behaviors in Perovskite Solar Cells. ACS Energy Letters, 6(3), 1003-1014. (2021).
    [39] Yin, W. J., Shi, T., & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 104(6), 063903. (2014).
    [40] Bi, D., El-Zohry, A. M., Hagfeldt, A., & Boschloo, G. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. Acs Photonics, 2(5), 589-594. (2015).
    [41] Du, T., Kim, J., Ngiam, J., Xu, S., Barnes, P. R., Durrant, J. R., & McLachlan, M. A. Elucidating the Origins of Subgap Tail States and Open‐Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials, 28(32), 1801808. (2018).
    [42] Kiermasch, D., Rieder, P., Tvingstedt, K., Baumann, A., & Dyakonov, V. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific reports, 6(1), 1-7. (2016).
    [43] Wang, Y., Liu, X., Zhang, T., Wang, X., Kan, M., Shi, J., & Zhao, Y. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?. Angewandte Chemie, 131(46), 16844-16849. (2019).

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 2024/08/26 (校外網路)
    全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE