簡易檢索 / 詳目顯示

研究生: 尚少華
Shao-Hua Shang
論文名稱: 大臺北地區地震後火災風險評估
The Evaluation of Post-Earthquake Fire Risk in Taipei,Taiwan
指導教授: 林慶元
Ching-Yuan Lin
口試委員: 沈子勝
none
簡賢文
none
彭雲宏
none
江維華
none
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 蒙地卡羅模擬法簡易地震災損推估系統台灣地震損失評估系統震後火災風險評估區域聯防機制
外文關鍵詞: Monte Carlo Simulation, Simple earthquake seismic system, Taiwan Earthquake Loss Estimation System, Post-earthquake fire, Risk assessment, Regional mutual aid system
相關次數: 點閱:384下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以大臺北地區(係指臺北市及新北市地區,以下皆同)為研究區域,模擬山腳斷層
    作為假設地震之觸發斷層帶,假定地震震央位於鄰近臺北市之上部地區,發生芮氏規模6.8
    地震,使用蒙地卡羅模擬法Monte Carlo simulation隨機模擬100組地震事件參數(臺北市及新北
    市),帶入簡易地震災損推估系統Simple Earthquake Seismic System(以下簡稱SESS)和台灣地震
    損失評估系統Taiwan Earthquake Loss Estimation System(以下簡稱TELES),演算出震後火災的
    風險評估uncertainty analysis,進行地震後火災之模擬,並針對臺北市及新北市的消防分隊數
    進行防災整備力之探討,分析地震後火災搶救的不確定性,評估整體大臺北區域之消防應變
    能力。
    由SESS 分析結果可見,原來風險機率臺北市25.51%新北市73.19%,經區域聯防臺北市
    可達到56.18%新北市為100%,而TELES 的原來風險為臺北市53.51%新北市92.2%,經區域
    聯防後均可達到100%救災能力需求。臺北市雖SESS 經區域聯防後,距60%風險門檻仍有部
    分差距,但已提升救災能力。再藉由TELES 分析結果顯示,區域聯防可顯著提升救災能力,
    並接近達到救災資源調度需求,因地震天災發生地點規模形態,及所造成的災害傷亡有不確
    定性,但本研究借由兩種獨力開發的地震災害損失系統,驗證後能有效提供震後火災搶救調
    度評估之參考。


    The research focused on great Taipei area and simulated San-chiao fault triggered an
    earthquake, assumed the center was located at the upper area near Taipei City, earthquake
    measuring 6.8 on the Richter scale, simulated 100 sets of earthquake events ( Taipei City and New
    Taipei City) with Monte Carlo Simulation, demonstrated in Simple earthquake seismic system
    (SESS) and Taiwan Earthquake Loss Estimation System (TELES), calculated post- earthquake fire
    risk evaluation, conducted post-earthquake fire simulation, examined disaster rescue capability from
    fire station numbers in both Taipei city and New Taipei City, performed post-earthquake fire
    uncertainty analysis, and assessed fire rescue capability in great Taipei area.
    The SESS analysis results indicated that the original risk probability was Taipei City 25.51%
    and New Taipei City 73.19%, and increased to 56.18% and 100% with the activation of a regional
    mutual aid system. The original risk calculated by the TELES was Taipei City 53.51% and New
    Taipei City 92.2%, and both increased to 100% of the overall fire rescue capability requirements
    after the regional mutual aid system was launched. Although the SESS results indicated that Taipei
    City remained below the 60% risk threshold following the launch of the regional mutual aid system,
    the rescue capability was substantially increased. The TELES analysis results indicated that the
    regional mutual aid system can increase local fire rescue capability and nearly satisfy all disaster
    resource deployment requirements. Although the location, scale, type of earthquakes and the
    resulting casualties are always uncertain, the results of this study was verified by 2 independently
    developed earthquake damage estimation systems and can provide an effective reference for
    post-earthquake fire rescue deployment assessments.

    中文摘要 ...................................................................... I 英文摘要 ..................................................................... II 誌 謝 .................................................................... III 圖目錄 ....................................................................... VI 表目錄 ...................................................................... VII 第一章 緒論 .................................................................. 1 1.1 研究背景 ............................................................. 1 1.2 研究目的與範圍 ....................................................... 1 第二章 文獻回顧 .............................................................. 2 2.1 地震災損風險評估及相關文獻 ............................................ 2 2.2 地震後火災分析及相關文獻 .............................................. 5 第三章 研究方法與步驟 ........................................................ 9 3.1 文獻分析法 ............................................................ 9 3.2 蒙地卡羅模擬法 ........................................................ 9 3.3 簡易地震災損推估系統 .................................................. 9 3.4 台灣地震損失評估系統 ................................................. 10 3.5 區域聯防機制 ......................................................... 12 3.6 格網分析 ............................................................. 13 3.7 模擬方法與步驟 ....................................................... 13 第四章 實驗結果與分析 ....................................................... 16 4.1 以SESS 之震後火災數驗證大臺北地區之消防力 ............................ 16 4.2 以TELES 之震後火災數驗證大臺北地區之消防力 ........................... 25 4.3 驗證結果檢討 ......................................................... 28 第五章 結論與建議 ............................................................ 29 5.1 結論 ................................................................. 29 5.2 建議 ................................................................. 29 參考文獻 ..................................................................... 30 附錄 ......................................................................... 33 V 著作 ......................................................................... 57

    [1] Baker , Gregory B, Peter C.R. Collier, Anthony K. Abu and Brent J. Houston. 2013.
    “Post-Earthquake Structural Design for Fire – a New Zealand Perspective”. 7th International
    Conference on Structures in Fire, Zurich, Switzerland, June 6-8, 2012.
    [2] Nishino, Tomoaki, Takeyoshi Tanaka, and Akihiko Hokugo. 2012. “An evaluation method for
    the urban post-earthquake fire risk considering multiple scenarios of fire spread and
    evacuation” Fire Safety Journal 54: 167-180.
    [3] Ergonul , S.2005. “A probabilistic approach for earthquake loss estimation.” Structural
    Safety 27: 309-321.
    [4] Erdik, Mustafa, et al., Rapid earthquake loss assessment after damaging earthquakes [J].Soil
    Dynamics and Earthquake Engineering, 2011, 31.2: 247-266.
    [5] Fischer , T., M. Alvarez, J. C. De la Llera, and R. Riddell. 2002. “An integrated model for
    earthquake risk assessment of buildings.”Engineering Structures 24: 979-998.
    [6] Wang Z. Z. and Zhang Z., Seismic damage classification and risk assessment of mountain
    tunnels with a validation for the 2008 Wenchuan earthquake [J]. Soil Dynamics and
    Earthquake Engineering, 2013, 45: 45–55.
    [7] Huang C. J., C. H. Chang, and K. Y. Chang. 2009. “Uncertainty Propagation of Earthquake
    Loss Estimation System on The Early Seismic Damage Evaluation.” 17th International
    Conference on Geoinformatics:1-6,2009.
    [8] Wang JuiPin, Lin ChiiWen, Taheri H., Chan WenShan, Impact of fault parameter uncertainties
    on earthquake recurrence probability examined by Monte Carlo simulation - an example in
    Central Taiwan [J], Engineering Geology, 126, 2012: 67-74.
    [9] 陳瑋鈞,「地震後火災消防單位救災能力之研究」(碩士論文,臺北科技大學土木與防災
    研究所,2009),48- 95。
    [10] 黃麒然,「考量風險規劃於地震後火災搶救與緊急醫療之研究」(博士論文,臺北科技大
    學工程科技研究所,2009),26- 83。
    [11] 邵揚威,「震後火災災害潛勢風險分析及管理策略之研究-以基隆市為例」(博士論文,
    臺北科技大學工程科技研究所,2013),123-183。
    [12] Mousavi , S., A. Bagchi, and V. K. R. Kodur. 2008.“Review of Post-Earthquake Fire Hazard to
    Building Structures.”Canadian Journal of Civil Engineering 35:689-698.
    31
    [13] Ronagh , Hamid Reza, and Behrouz Behnam.2012. “Investigating the Effect of Prior Damage
    on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames.” International
    Journal of Concrete Structures and Materials .6, No.4( December 2012):209–220.
    [14] Ren , A. Z., and X. Y. Xie. 2004. “The Simulation of Post-Earthquake Fire-Prone Area Based
    on GIS” Journal of Fire Sciences 22:421-439.
    [15] 樊國恕,「地理資訊系統為基礎之震後火災潛勢分析之研究,2006」,行政院國家科學
    委員會,25-31。
    [16] 李達志,「震後火災起火危險度評估之研究」(碩士論文,中央警察大學消防科學研究所,
    2003),99-120。
    [17] Lee, Selina W., and Rachel A. Davidson. Physics-based simulation model of post-earthquake
    fire spread [J].Journal of Earthquake Engineering, 2010, 14.5: 670-687.
    [18] Lee, Selina W. and Rachel A. Davidson. Application of a physics-based simulation model to
    examine post-earthquake fire spread [J].Journal of Earthquake Engineering, 2010, 14.5:
    688-705.
    [19] Li, Sizheng, and Rachel A. Davidson., Parametric study of urban fire spread using an urban fire
    simulation model with fire department suppression [J] .Fire Safety Journal, 2013, 61: 217-225.
    [20] Nishino Tomoaki, Tanaka Takeyoshi, and Shin-ichi Tsuburaya., Development and Validation
    of a Potential-Based Model for City Evacuation in Post-Earthquake Fires [J].Earthquake
    Spectra,2013, 29.3: 911-936.
    [21] 黃憲章,「震後火災救援能力探討研究-以臺中市為例」(碩士論文,逢甲大學土地管理學
    系碩士班,2007),55-83。
    [22] 邱文豐、邱晨瑋、湯文烈、尤昭仁,「震後搶救消防水源整備與運用之研究案,2005」,
    內政部消防署委託研究報告,101-144。
    [23] 王志鵬,「地震後火災消防用水整備之研究」(碩士論文,臺北科技大學土木與防災研究
    所,2012),91-146。
    [24] 吳坤忠,「都市建築物震後火災危險因子之研究」(碩士論文,臺北科技大學土木與防災
    研究所,2013),37-44。
    [25] Chang ,K. Y.2002.Establishment of Analysis System for Damages Calculation:36-42. National
    Fire Agency.
    [26] Campbell ,K. W.1981.“Near-source attenuation of peak horizontal acceleration.” Bulletin of
    the Seismological Society of America 71.
    32
    [27] Yeh , Chin-Hsun, Chin -Hsiung Loh ,and Keh-Chyuan Tsai.2006.“Overview of Taiwan
    Earthquake Loss Estimation System.” Natural Hazards37: 23-37.

    QR CODE