簡易檢索 / 詳目顯示

研究生: 黃柏霖
Po-Lin Huang
論文名稱: 有效的去雜訊優先解馬賽克法應用於含雜訊的Bayer馬賽克影像
Efficient Denoising-first Demosaicing Method for Noisy Bayer Mosaic Images
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 貝蘇章
Soo-Chang Pei
阮聖彰
Shanq-Jang Ruan
黃詠淮
Yong-Huai Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 30
中文關鍵詞: 比較組合解馬賽克去雜訊含雜訊的Bayer馬賽克影像品質改善重建的RGB全彩影像
外文關鍵詞: Comparative combination, Demosaicing, Denoising, Noisy Bayer mosaic image, Quality improvement, Reconstructed RGB full-color image
相關次數: 點閱:272下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定一輸入 Bayer 馬賽克影像,解馬賽克是一個重建 RGB 全彩影像的必要流程。然而,Bayer 馬賽克影像的雜訊通常是無法避免的,而且雜訊往往造成重建的 RGB 全彩影像品質下降。本篇論文針對含雜訊的 Bayer 馬賽克影像提出一個新穎且有效的四階段去雜訊優先解馬賽克法進行解馬賽克,使得重建的 RGB 全彩影像有較好的品質。在第一階段,我們提出一個植基於紋理一致的方法從 Bayer 馬賽克影像的虛擬雜訊中區分出真正的雜訊。在第二階段,我們首先提出了一個植基於優先權第一和邊緣感測的恢復方法來估測出真正雜訊的原始綠色像素值。接著,利用內插的紅/藍場引導的恢復方法來估測出缺少的綠色像素值,其中,這些綠色像素值的紅或藍像素值必須是可利用的。剩餘的缺少之綠色像素值則由所提的植基於梯度方向的結合法估測而得。在第三階段,我們提出一個由重建的綠色平面引導之方法來估測真正雜訊的原始紅色和藍色像素值,此外,我們提供一個可允許的雜訊量上界來確保含雜訊之 Bayer 馬賽克影像的完整回復。在第四階段,我們採用一個現存的解馬賽克方法來重建 RGB 全彩影像。根據由兩個典型測試影像圖庫,IMAX 和 Kodak 所產生的含雜訊之 Bayer 馬賽克測試影像集,實驗結果顯示,相較於數個優異的比較方法,所提之去雜訊優先解馬賽克法在重建的 Bayer 馬賽克影像與 RGB 全彩影像有顯著的品質改善。


    Given an input Bayer mosaic image, demosaicing is a necessary process to reconstruct the red-green-blue (RGB) full-color image. However, noise is usually unavoidable in the Bayer mosaic image, and it often degrades the quality of the reconstructed RGB full-color image. In this thesis, a novel and efficient four-stage denoising-first demosaicing method is proposed to demosaic the noisy Bayer mosaic image, leading to good quality of the reconstructed RGB full-color image. In the first stage, a texture-consistency based true noise determination approach is proposed to distinguish the true noise from the pseudo-noise in the noisy Bayer mosaic image. In the second stage, first we propose a priority-first- and edge-sensing-based recovery approach to estimate the truly noisy ground-truth G pixels. Then an interpolated R/B field-guided recovery approach is proposed to estimate the missing G pixels, for which the co-located noise-free R/B pixels are available. The remaining missing G pixels are estimated by the proposed gradient orientation-based fusion approach. In the third stage, a reconstructed G color plane-guided approach is proposed to estimate the truly noisy ground-truth R/B pixels, and an upper bound of the allowable noise level is provided to guarantee the complete recovery of the noisy Bayer mosaic image. In the fourth stage, an existing demosaicing method is adopted to reconstruct the RGB full-color image. Based on two typical noisy Bayer mosaic test image sets, which are generated from the IMAX and Kodak test image sets, the experimental results demonstrated that the proposed denoising-first demosaicing method achieves substantial quality improvement of the reconstructed Bayer mosaic and RGB full-color images when compared with several state-of-the-art comparative methods.

    指導教授推薦書 i 論文口試委員審定書 ii 中文摘要 iii Abstract in English iv 誌謝 v Contents vi List of Figures viii List of Tables ix 1 Introduction 1 1.1 Motivation 2 1.2 Contribution 4 2 THE PROPOSED DENOISING-FIRST DEMOSAICING METHOD FOR NOISY BAYER MOSAIC IMAGES 6 2.1 The First Stage: Local Texture-consistency Based True Noise Determination 6 2.2 The Second Stage: Recovering the Truly Noisy Ground-truth and Missing G Pixels . 9 2.2.1 Recovery of truly noisy ground-truth G pixels 9 2.2.2 Recovery of missing G pixels 12 2.3 The Third Stage: Restored G Color Plane-guided Approach to Recover Truly Noisy Ground-truth R/B Pixels 17 2.4 The Fourth Stage: Demosaicing the Denoised Bayer Mosaic Image 18 3 EXPERIMENTAL RESULTS 19 3.1 CPSNR and PSNR Quality Merits 19 3.2 Visual Quality Merit 20 4 Conclusion 25 5 APPENDIX I: THE PROOF OF THEOREM 1 26

    [1] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, Jul. 1976.
    [2] T. Bai, J. Tan, M. Hu, and Y. Wang, “A novel algorithm for removal of salt and pepper noise using continued fractions interpolation,” Signal Processing, vol. 102, pp. 247-255, Sep. 2014.
    [3] H. H. Chou, L. Y. Hsu, and H. T. Hu, “Multi-level adaptive switching filters for highly corrupted images” Journal of Visual Communication and Image Representation, vol. 30, pp. 363-375, Jul. 2015.
    [4] K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Trans. Image Processing, vol. 17, no. 12, pp. 2356-2367, Dec. 2008.
    [5] L. Condat, “A generic variational approach for demosaicking from an arbitrary color filter array,” IEEE International Conference on Image Processing (ICIP), pp. 1625-1628, Nov. 2009.
    [6] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. H. PremChand, “Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter,” IEEE Signal Processing Letters, vol. 18, no. 5, pp. 287-290, May 2011.
    [7] B. K. Gunturk, Y. Altunbasak, and R. Mersereau, “Color plane interpolation using alternating projections,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2002.
    [8] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, Jun. 2013.
    [9] I. F. Jafar, R. A. AlNa’mneh, and K. A. Darabkh, “Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise,” IEEE Trans. Image Processing, vol. 22, no. 3, pp. 1223-1232, Mar. 2013.
    [10] R. Kimmel, “Demosaicing: image reconstruction from color CCD samples,” IEEE Trans. Image Processing, vol. 8, no. 9, pp. 1221-1228, Sep. 1999.
    [11] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation for color image demosaicking,” IEEE International Conference on Image Processing (ICIP), pp. 2304-2308, Jul. 2013.
    [12] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Beyond color difference: residual interpolation for color image demosaicking,” IEEE Trans. Image Processing, vol. 25, no. 3, pp. 1288-1300, Mar. 2016.
    [13] T. kuno, H. Sugiura, and N. Matoba, “New interpolation method using discriminated color correlation for digital still cameras,” IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp. 259-267, Feb. 1999.
    [14] R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Trans. Consumer Electronics, vol. 51, no. 4, pp. 1260-1267, Nov. 2005.
    [15] R. Lukac and K. N. Plataniotis, “Normalized color-ratio modeling for CFA interpolation,” IEEE Trans. Consumer Electronics, vol. 50, no. 2, pp. 737-745, May 2004.
    [16] W. Lu and Y. P. Tan, “Color filter array demosaicking: new method and performance measures,” IEEE Trans. Image Processing, vol. 12, no. 10, pp. 1194-1210, Oct. 2003.
    [17] P. E. Ng and K. K. Ma, “A switching median filter with boundary discriminative noise detection for extremely corrupted images,” IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1506-1516, Jun. 2006.
    [18] I. Pekkucuksen and Y. Altunbasak “Gradient based threshold free color filter array interpolation,” IEEE International Conference on Image Processing (ICIP), pp. 137-140, Sep. 2010.
    [19] S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 6, pp. 503-513, Jun. 2003.
    [20] K. S. Srinivasan and D. Ebenezer, “A new fast and efficient decision-based algorithm for removal of high-density impulse noises,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 189-192, Mar. 2007.
    [21] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE, vol. 6822, p. 68221J.1-68221J.15, Jan. 2008.
    [22] X. Wang, W. Lin, and P. Xue, “Demosaicing with improved edge direction detection,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2048-2051, May 2005.
    [23] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for digital cameras,” IEEE Trans. Image Processing, vol. 13, no. 9, pp. 1263-1274, Sep. 2004.
    [24] W. Ye and K. K. Ma, “Color image demosaicing using iterative residual interpolation,” IEEE Trans. Image Processing, vol. 24, no. 12, pp. 5879-5891, Dec. 2015.
    [25] L. Zhang and X. Wu., “Color demosaicking via directional linear minimum mean square-error estimation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2167-2178, Dec. 2005.
    [26] IMAX image database, http://www4.comp.polyu.edu.hk/~cslzhang/CDM\_Dataset.htm
    [27] Kodak image database, http://r0k.us/graphics/kodak/

    QR CODE