簡易檢索 / 詳目顯示

研究生: 游正宇
Yu-Cheng Yu
論文名稱: 柔輪齒面修形對諧波齒輪強度影響之研究
Research on the Influence of Flex Spline with Flank Crownings on Gear Strength of Harmonic Drive
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 李維楨
Wei-Chen Lee
吳育仁
Yu-Ren Wu
徐冠倫
Kuan-Lun Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 諧波齒輪減速機有限元素分析齒面修形
外文關鍵詞: Harmonic gear reducer, finite element method, tooth flank modification
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

諧波齒輪減速機廣泛應用於半導體設備、醫療設備、機械手臂等,這些減速機具有體積小、零背隙和高速比的優點,由於工業自動化的發展,對諧波齒輪減速機的需求越來越大。
該減速器由三個基本部件組成:通常帶有橢圓凸輪的波產生器、作為可彈性變形的杯形且其開口端具有外齒的柔輪(FS)和作為剛性內齒輪的剛輪(CS)。其中剛輪是一個與柔輪嚙合的剛性內齒輪,由波產生器的旋轉驅動,柔輪與剛輪的全共軛齒面可以從齒輪理論推導出來,然而,考慮到柔輪的變形,其理論齒形不能滿足實際上的需求。
因此,本研究採用有限元方法(ANSYS)分析負載作用下三個部件的應力。首先,使用二維ANSYS應力分析評估兩個柔輪的設計參數(中性線的位置係數和偏差係數)以獲得齒輪輪廓的最佳值,然後,使用三維ANSYS應力分析評估波產生器、柔輪以及剛輪的變形和應力。於此,在齒輪上加入齒隙、齒面修形和齒頂修形的設計,以避免齒輪干涉並提高齒輪接觸性能。


The harmonic gear reducers are widely applied in semiconductor equipment, medical equipment, robotic arms, et cetera. These reducers have excellent advantages of small size, zero backlashes, and high gear ratio. The demand for harmonic gear reducers is increasing due to the development of industrial automation.
This reducer comprises three essential components: a wave generator with an elliptical cam normally, a flex spline (FS) which is an elastically deformable cup and its open end having external teeth, and a circular spline (CS) which is a rigid internal gear. Its CS is a rigid internal gear engaged with a FS, driven by the wave generator’s rotation. The full-conjugated tooth surfaces of FS and CS can be derived from gear theory. However, the perfect tooth surfaces cannot satisfy the application considering the deformation of FS.
Therefore, this research uses the finite element method (ANSYS) to analyze the stresses of three components under loading. Firstly, two FS’s design parameters (position coefficient of the neutral curve) and (coefficient of deviation) are evaluated to obtain the optimal values for better gear profiles using two-dimensional ANSYS stress analysis. And then, the deformation and stresses of a wave generator, FS, and CS are assessed using three-dimensional ANSYS stress analysis. Here, backlash, tooth flank modification, and tip relief of gear pair are applied to gear design to avoid tooth interference and improve tooth contact performance.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝誌 V 目錄 VI 圖目錄 IX 表目錄 XII 符號索引 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 文獻回顧 3 1.5 論文架構 7 第2章 諧波減速機之柔輪和剛輪理論齒形數學模式 9 2.1 前言 9 2.2 柔輪齒條刀具數學模式 9 2.3 柔輪齒形數學模式 10 2.4 剛輪齒形數學模式 12 2.4.1 二維波產生器數學模式 12 2.4.2 柔輪中性線數學模式 12 2.4.3 剛輪齒形數學模式 15 2.5 數值範例 17 2.6 小結 23 第3章 建立諧波減速機之ANSYS有限元素分析模型 24 3.1 前言 24 3.2 商用有限元素分析軟體介紹 24 3.3 ANSYS有限元素分析介紹 24 3.4 建立有限元分析模型 25 3.4.1 零件之節點與網格建立 25 3.5 波產生器塞入柔輪之應力分析 34 3.5.1 接觸設定 35 3.5.2 設立邊界條件與負載控制 36 3.6 柔輪與剛輪多齒接觸之應力分析 37 3.6.1 接觸設定 37 3.6.2 設立邊界條件與負載控制 37 3.6.3 後處理 41 3.7 數值範例 41 3.8 小結 43 第4章 諧波齒輪設計參數對齒輪齒面接觸應力之影響 44 4.1 前言 44 4.2 建立二維有限元素分析模型 44 4.3 設立接觸條件 44 4.4 設立邊界條件 44 4.5 中性線位置對齒輪應力的影響 45 4.5.1 收斂性分析 46 4.5.2 各組ANSYS分析結果 47 4.6 偏差係數對齒輪應力的影響 50 4.6.1 創成剛輪齒形軌跡的比較 51 4.6.2 不同偏差係數 之有限元素分析比較 52 4.7 小結 57 第5章 柔輪和剛輪齒面修形之ANYSY分析齒輪應力的影響 59 5.1 前言 59 5.2 諧波齒輪之齒形修形 59 5.2.1 背隙 59 5.2.2 二次修形 60 5.2.3 倒角及齒頂修形 61 5.3 數值範例 62 5.3.1 不同外形波產生器之分析結果 63 5.3.2 波產生器塞入柔輪之分析結果 65 5.3.3 柔輪施加扭矩之分析結果 68 5.4 小結 74 第6章 結論與建議 75 6.1 結果與討論 75 6.2 建議與未來展望 75 參考文獻 77

[1] Harmonic Drive LLC, 2005, "Harmonic Drive reducer for precision control general catalog".
[2] Musser, C., 1959, "Strain wave gearing. " US Patent, No.2906143.
[3] Kondo, K., and Takada, J., 1987, "Study on wave gear drives: Kinematics and Geometry of Tooth Engagement: Vibration, Control Engineering, Engineering for Industry, " JSME international journal 30(263): pp.854-860.
[4] Kondo, K., and Takada, J., 1990, "Study on tooth profiles of the harmonic drive." Journal of Mechanical Design, Transactions of the ASME, pp.131-137.
[5] Kiyosawa, Y., Takizawa, N., Oukura, T., and Yamamoto, Y., 1993, "Cup-type harmonic drive having a short, flexible cup member," US Patent, No.5269202.
[6] Ishikawa, S., 1989, "Tooth profile of spline of strain wave gearing," US Patent, No.4823638.
[7] Ishikawa, S., and Kiyosawa, Y., 1995, "Flexing contact type gear drive of non-profile-shifted two-circular-arc composite tooth profile," US Patent, No.5458023.
[8] Kayabasi, O., Erzincanli, F. J. M., 2007, "Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modelling," 28(2), pp. 441-447.
[9] Rhéaume, F., Champliaud, H., and Liu, Z., 2009, "Understanding and modelling the torsional stiffness of harmonic drives through finite-element method," Journal of Mechanical Engineering Science, 223(2), pp. 515-524.
[10] Chen, X. X., Lin, S. Z., and Xing, J. Z., 2010, "Deformation of flexspline under transmission force in harmonic drive," 2009 International Conference on Manufacturing Science and Engineering, pp. 3536-3539.
[11] Gao, H.B., Zhuang, H.C., Li, Z.G., Deng, Z.Q., Ding, L., and Liu, Z., 2012, "Optimization and experimental research on a new-type short cylindrical cup-shaped harmonic reducer," Journal of Central South University, 19(7), pp. 1869-1882.
[12] 陳毅恆,2013,諧波齒輪傳動系統之有限元素分析,碩士,國立交通大學,新竹市。
[13] 李東祐,2015,諧波齒輪傳動系統之三維有限元素分析,碩士,國立交通大學,新竹市。
[14] Sahoo, V., and Maiti, R., "State of stress in strain wave gear flexspline cup on insertion of drive cam - Experiment and analysis," Proc. World Congress on Engineering 2016, Newswood Limited, pp. 966-971.
[15] Li, S., 2016, "Diaphragm stress analysis and fatigue strength evaluation of the flex-spline, a very thin-walled spur gear used in the strain wave gearing," 104, pp. 1-16.
[16] 程雲豪,2017,漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計,碩士,國立中央大學,桃園縣。
[17] Zheng, J., and Yang, W., 2018, "Failure Analysis of a Flexspline of Harmonic Gear Drive in STC Industrial Robot: Microstructure and Stress Distribution," IOP Conference Series: Materials Science and Engineering, 452, p. 042148.
[18] Yu, Z., and Ting, K.l., 2018,"Application of Finite Element Analysis for the Strain Wave Gear Tooth Surfaces Design and Modifications," Proc. American Gear Manufacturing Association Fall Technical Meeting, pp. 37-44.
[19] Li, X., Song, C., Yang, Y., Zhu, C., and Liao, D., 2020, "Optimal design of wave generator profile for harmonic gear drive using support function," Mech Mach Theory, 152, p. 103941.
[20] Yang, C., Hu, Q., Liu, Z., Zhao, Y., Cheng, Q., and Zhang, C., 2020, "Analysis of the Partial Axial Load of a Very Thin-Walled Spur-Gear (Flexspline) of a Harmonic Drive," International Journal of Precision Engineering and Manufacturing, 21(7), pp. 1333-1345.
[21] Sahoo, V., Mahanto, B. S., and Maiti, R., 2020, "Stresses in flex gear of a novel harmonic drive with and without pay load," Australian Journal of Mechanical Engineering, p. 1769462.
[22] Litvin, F. L., and Fuentes, A., 2004, "Gear geometry and applied theory," Cambridge University Press.

無法下載圖示 全文公開日期 2031/10/27 (校內網路)
全文公開日期 2031/10/27 (校外網路)
全文公開日期 2031/10/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE