簡易檢索 / 詳目顯示

研究生: 林元凱
Yuan-Kai Lin
論文名稱: Li-Nafion黏著劑均勻包覆NCM正極材料之研究
Research on Conformal Coating of Li-Nafion Binder on NCM Positive Electrode Materials
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
潘俊仁
Chun-Jern Pan
林明憲
Ming-Hsien Lin
黃炳照
Bing-Joe Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 146
中文關鍵詞: 高鎳正極材料Li-Nafion高倍率充放性能循環充放電穩定性
外文關鍵詞: Ni-rich Positive Electrode Materials, Li-Nafion, Rate performance, Cycle Stability
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球主要經濟體積極推動降低對石化燃料的需求,促使新一波的能源轉型,而在發展轉型的路線上,提升鋰離子二次電池的能量密度成為重要的課題。高鎳正極材料具有超過210 mAh/g的高能量密度,因此而受到關注。但隨著鎳含量的提升,在充放電過程中,高鎳正極材料的劣化與容量的衰退也更為嚴重。黏著劑為鋰離子二次電池中不可或缺的元件,但目前商品化的PVDF僅提供物理性的黏合作用,未能對電極電化學性能有加成綜效。
    在本研究中,選用具有陽離子傳導特性的Li-Nafion做為鋰離子二次電池高鎳正極材料 (NCM) 的粘著劑,並通過機械融合法將活性碳材均勻的包覆在 NCM表面 (NCM@C),從而優化了Li-Nafion在NCM@C表面上的包覆均勻性,進而降低電極內的介面阻抗。經由電化學測試,在6C速率下,NCM@C可獲得153.1 mAh/g放電容量,遠優於NCM使用傳統混漿電極的134.3 mAh/g。均勻的包覆不僅提升了倍率放電的性能,也延緩了電解液與正極材料表面的反應,而有較好的循環放電表現。在1C充放電速率下測試100次循環後,NCM@C的容量保持率為91%,優於傳統混漿NCM電極的88 %,進一步將充放電速率提升至6C經過100次循環後,NCM@C的容量保持率與傳統混漿的NCM電極比較由74 %提升至85 %,在高倍率放電下,均勻塗層改善的效果更加顯著。我們發現透過正極材料的表面塗層,來改善電極內的介面阻抗,可以提高倍率放電性能和循環壽命。這個研究中所使用的表面改質方法,無須經過多餘的清洗或是熱處理,提供一種快速、且穩定的操作技術,簡化了處理的程序與降低成本。儘管在一般低速充放電的電池使用狀況下效果較不顯著,但在高倍率下的充放電性能與循環壽命提升極為顯著,這為需要快速充放電能力的應用提供了一個具有潛力的方向。
    最後本研究也顯示了在室溫下,使用Li-Nafion同時做為黏著劑與高分子電解質的測試,做為未來高分子電解質應用的方向。


    Major global economies are actively pushing for a reduction in the demand for fossil fuels, leading to a new era of energy transformation. In the course of developing this transition, enhancing the energy density of lithium-ion batteries has become a crucial challenge. Nickel-rich positive electrode materials have attracted attention due to their high energy density exceeding 210mAh/g. However, as the nickel content increases, the degradation and capacity decay of nickel-rich positive electrode materials become more severe during the charging and discharging process. Additionally, binders are indispensable components in lithium-ion secondary batteries. However, the currently commercialized PVDF (polyvinylidene fluoride) only provides physical adhesion, lacking other desirable properties.
    In this study, a novel process was developed for the conformal coating of a lithium-ion conductive lithiated Nafion (Li-Nafion) binder on a nickel-rich positive electrode material, namely LiNi0.83Co0.12Mn0.05O2 (NCM), for lithium-ion batteries (LIBs). Specifically, mechanofusion was first performed to first fabricate an active carbon coating (Super-P) over the surface of NCM, named as NCM@C, thereby optimizing the Li-Nafion coating on NCM@C and reducing the interface impedance between Li-Nafion and NCM. The electrochemical test results revealed that the 6C discharge capacity of NCM@C increased from 134.3 mAh/g to 153.1 mAh/g following the mechanofusion treatment, verifying that conformal and uniform Li-Nafion coating improved discharge rate performance as well as mitigated interactions between the electrolyte and positive electrode materials surface, leading to better cycle discharge performance. After 100 cycles at 1C charge/discharge tests, NCM@C boosted its capacity retention from 88% to 91%. Furthermore, after conducting 100 cycles of testing at a charge-discharge rate of 6C, the capacity retention of NCM@C increased from 74% to 85%. The improvement in the uniform coating had an even more pronounced effect under high-rate discharge conditions. This study confirmed that a positive electrode materials coating with conformal and high uniformity enables the alleviation of interface impedance between Li-Nafion and NCM, thereby increasing the discharge rate performance and cycle life of batteries. The surface modification method utilized in this study offers a fast and stable operational technique without excessive washing or heat treatment, thereby reducing processing steps and costs. Although the effects may not be significant under typical low-rate charge-discharge conditions, there is a notable improvement in charge-discharge performance and cycle life under high-rate conditions. This provides a promising direction for applications requiring rapid charge and discharge capabilities.
    In the final part of this study, the testing of Li-Nafion as both a binder and a polymer electrolyte at room temperature, serving as a reference for future applications of polymer electrolytes.

    目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XV 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子二次電池的應用 3 1.3 淨零碳排 (Net‐zero Emissions) 5 1.4 鋰離子二次電池工作原理概述 8 1.4.1 鋰離子二次電池負極材料 (Negative electrode materials) 10 1.4.2 鋰離子二次電池正極材料 (Positive electrode materials) 11 第 2 章 文獻回顧 13 2.1 金屬氧化物正極材料的演進 13 2.1.1 三元金屬氧化物正極材料的發現 14 2.1.2 鎳含量對鎳鈷錳三元正極材料的影響 17 2.1.3 高鎳正極材料的挑戰 20 2.1.3.1 陽離子錯位效應 (Cation Mixing) 23 2.1.3.2 高鎳正極材料的表面重建 (Surface reconstruction)機制 27 2.1.3.3 正極-電解液介面層 (Cathode electrolyte interphase CEI) 29 2.1.3.4 微裂紋結構 (Microcrack) 30 2.1.3.5 熱穩定性及安全性 (Thermal stability) 32 2.1.4 高鎳正極材料的表面修飾 34 2.2 鋰離子二次電池中的高分子黏著劑 (Binder) 37 2.3 機械融合法 (Mechanofusion) 41 2.4 研究動機 43 第 3 章 實驗方法及儀器 46 3.1 實驗藥品及化學品 46 3.2 實驗儀器及設備 46 3.3 實驗步驟 47 3.3.1 黏著劑Li-Nafion的製備 47 3.3.2 高鎳正極材料NCM表面修飾 48 3.3.3 NCM與NCM@C電極製備 48 3.4 電化學性能測試 50 3.4.1 鈕扣型電池組裝步驟 50 3.4.2 充放電測試條件 51 3.4.3 交流阻抗譜分析 51 3.5 材料鑑定與特性分析 53 3.5.1 傅立葉轉換紅外光譜儀 (FT-IR) 53 3.5.2 水滴接觸角分析 54 3.5.3 X-ray粉末繞射分析 55 3.5.4 場發射掃描式電子顯微鏡形貌與元素分析(SEM/EDS) 56 第 4 章 材料形貌與結構分析 58 4.1 Li-Nafion FT-IR結構分析 58 4.2 Li-Nafion做為NCM正極材料黏著劑的電極表面分析 59 4.3 經由Mechanofusion進行NCM表面修飾 61 4.4 Li-Nafion均勻性的差異與比較 65 第 5 章 Li-Nafion包覆層對正極材料的電化學性能影響 70 5.1 高速充放電循環比較 70 5.2 NCM與NCM@C以PVDF黏著劑之倍率性能比較 75 5.3 NCM與NCM@C以Li-Nafion黏著劑之倍率性能比較 81 5.4 NCM與NCM@C在不同充放電速率之循環壽命比較 86 5.5 在1C充放電速率循環過程之EIS分析 90 5.6 充放電循環前、後之電極XPS分析 96 5.7 以Li-Nafion做為黏著劑及隔離膜系統測試 100 第 6 章 結論 105 第 7 章 未來展望 107 第 8 章 參考文獻 109 第 9 章 附錄 119 附錄1. 119 附錄2. 122 附錄3. 123 附錄4. 124 附錄5. 127 圖目錄 Figure 1 1 2019~2030 market demand for Li-ion Battery by application10. 3 Figure 1 2 2000 and 2018 Li-ion Battery sales11. 4 Figure 1 3 Lithium-ion batteries placed on the global market (cell level, tonnes)13. 5 Figure 1 4 Key milestones in the pathway to net zero14. 7 Figure 1 5 Battery demand growth in transport and battery energy density in the NZE14. 8 Figure 1 6 A schematic illustration of LixC6/Li1−xCoO2 lithium-ion cell15. 9 Figure 1 7 Representative schematic of the main challenges associated with Li metal anode: (a) short circuit induced by Li dendrites, (b) formation of dead Li, and (c) development of thick and mechanically unstable SEI16. 11 Figure 2 1 Unit cell constants a, c and cell volume with the global phase diagram as a function of lithium concentration x in LiXCoO222. 13 Figure 2 2 Structure of layered lithium transition metal oxide materials with Ni/Li exchange26. 14 Figure 2 3 Schematic of d-electron levels of NCM materials28. 15 Figure 2 4 Compositional phase diagrams of lithium stoichiometric-layered transition-metal oxide: LiCoO2-LiNiO2-LiMnO231. 17 Figure 2 5 Comparison of the energy diagrams of LiCoO2, LiNiO2, and LiMnO232. 18 Figure 2 6 The relationship between discharge capacity and thermal stability and after 100 cycles capacity retention of difference NCM materials34, 35. 19 Figure 2 7 Illustrations of crystal structures relevant to the layered Ni-rich materials36. 21 Figure 2 8 Phase diagrams proposed from experimental and computational studies25. 22 Figure 2 9 Challenges of nickel-rich layered oxide positive electrode material. 22 Figure 2 10 Schematic of device for preparing transition metal hydroxides precursor by continuous co-precipitation40. 25 Figure 2 11 Effect of pH on the concentration of (Ni(NH3)n)2+, (Mn(NH3)n)2+, and (Co(NH3)n)2+ complexness41. 25 Figure 2 12 Schematic diagram of samples with different Li/TM ratios of 1.00 (E00), 1.06 (E06), and 1.12 (E12) indicating the Li/Ni mixing ratio, shrinkage, and enlargement of TMO6 and expansion and contraction of Li slab42. 27 Figure 2 13 Purpose mechanism of Oxygen Evolution Reaction (OER)43. 28 Figure 2 14 Schematic of surface change with the formation of residual lithium exposure in the Air47. 30 Figure 2 15 Schematic of CEI formation mechanism31. 30 Figure 2 16 Schematic of microcrack with difference nickel contain50. 32 Figure 2 17 Schematic diagram of the mechanism driving the cation transfer in two cases: (a) oxygen vacancies and (b) thermal expansion of the Li slab55. 33 Figure 2 18 (a) Synthesis scheme of organic CEI precursor for NCM811, (b) electrochemical performance of NCM811 with artificial sulfonate CEI, (c) XPS results for cycled electrodes. 36 Figure 2 19 Schematic illustration of the change in the network structure between day one slurry (left) and day seven slurry (right). 38 Figure 2 20 Structure of poly(vinylidenefluoride-hexafluoro propylene). 39 Figure 2 21 Structure of lithiated Nafion. 40 Figure 2 22 (a) Schematic diagram for the principle of cation exchange polymer coating on the LiMn2O4 electrode to capture dissolved Mn2+ ions. (b) Ion exchange reaction between H+ ions on the Nafion ionomer and Mn2+ ions. 40 Figure 2 23 The mechanofusion system. 42 Figure 2 24 SEM micrographs and EDS mapping of Al on NCA coated with 1% Al2O3 (A)、(a) and Al on NCA coated with 2% Al2O3 (B)、(b)84. 43 Figure 3 1 The flowchart of NCM and NCM@C electrode fabrication. 50 Figure 3 2 The composition of the coin cell. 51 Figure 3 3 Simplified equivalent circuit of a lithium-ion battery half-cell85. 52 Figure 3 4 Equivalent circuit of a lithium-ion battery85. 53 Figure 3 5 Michelson interferometer86. 54 Figure 3 6 Illustration of contact angles87. 55 Figure 3 7 Schematic representation of the Bragg’s scattering88. 56 Figure 3 8 Signals generated when a high-energy beam of electrons interacts with a sample89. 57 Figure 4 1 Titration curve of 0.1N LiOH with 60g H-Nafion. 58 Figure 4 2 FT-IR spectra of the Nafion film in difference forms. 59 Figure 4 3 (a) SEM images of NCM with Li-Nafion binder electrode and (b) is the larger magnification images, the corresponding EDS mappings of nickel (c), fluorine (d), cobalt (e), carbon (f). 60 Figure 4 4 Cross-sectional SEM/EDS analysis of pristine NCM with Li-Nafion binder electrode, red dot is the signal of Ni element and green dot is the signal of F element. 61 Figure 4 5 (a) SEM images of pristine NCM powder and (b) SEM images of the NCM powder with Super-P (NMC@C) after mechanofusion process. 62 Figure 4 6 The particle size distribution was analyzed by laser particle size analyzer. 63 Figure 4 7 Powder XRD profile of NCM and NCM@C. 64 Figure 4 8 Contact angle with water on different positive electrode materials. (a) Bare NCM and (b) NCM@C. 65 Figure 4 9 (a) SEM images of NCM@C with Li-Nafion binder electrode and (b) is the larger magnification images, the corresponding EDS mappings of nickel (c), fluorine (d), cobalt (e), carbon (f). 66 Figure 4 10 Cross-sectional SEM/EDS analysis of NCM@C with Li-Nafion binder electrode, red dot is the signal of Ni element and green dot is the signal of F element. 67 Figure 4 11 SEM/EDS images of NCM and NCM@C electrodes after FIB treatment. 68 Figure 4 12 Schematic diagram of Li-Nafion coating with NCM and NCM@C powders. 68 Figure 4 13 Schematic diagram of tape peeling test (a), test results of NCM and NCM@C electrodes with Li-Nafion binder (b). 69 Figure 5 1 6C charge/discharge cycling test of NCM@C with Li-Nafion and PVDF as binder. 71 Figure 5 2 NCM@C with Li-Nafion and PVDF as binder at 6C rate after 100 cycles discharge curve. 71 Figure 5 3 The images of the battery disassembly after 100 cycles of testing at a 6C rate. 72 Figure 5 4 NCM@C with different binders SEM images of Li metal negative electrode after 6C charge-discharge cycles, where (a) (b) (c) represent Li-Nafion and (d) (e) (f) represent PVDF. 73 Figure 5 5 A schematic diagram illustrating the formation of SEI with (a) Li-Nafion and (b) PVDF. 74 Figure 5 6 C 1s XPS spectra and fitting results of NCM@C positive electrodes with Li-Nafion (a) and PVDF (b) binders after 100 cycles at the 6C charge/discharge. 75 Figure 5 7 Rate capability of (a) NCM and (b) NCM@C with PVDF binder. 76 Figure 5 8 NCM and NCM@C with PVDF binder discharge curve at 3C rate. 78 Figure 5 9 NCM and NCM@C with PVDF binder discharge curve at 6C rate. 78 Figure 5 10 6C charge/discharge cycling test of NCM and NCM@C with PVDF as binder. 80 Figure 5 11 NCM and NCM@C with PVDF binder at 6C rate discharge curve. 80 Figure 5 12 Rate capability of (a) NCM and (b) NCM@C with Li-Nafion binder. 82 Figure 5 13 NCM and NCM@C with Li-Nafion binder discharge curve at 3C rate. 84 Figure 5 14 NCM and NCM@C with Li-Nafion binder discharge curve at 6C rate. 85 Figure 5 15 Discharge capacity and columbic efficiency with cycle number at 1C charge/1C discharge. The filled marker with curve indicates 1C discharge capacity, and empty marker with curve indicates coulombic efficiency. 87 Figure 5 16 Discharge capacity and columbic efficiency with cycle number at 6C charge/6C discharge. The filled marker with curve indicates 6C discharge capacity, and empty marker with curve indicates coulombic efficiency. 88 Figure 5 17 The discharge curves of NCM and NCM@C at the 1st, 10th, and 100th cycle at 1C rate. 89 Figure 5 18 The discharge curves of NCM and NCM@C at the 1st, 10th, and 100th cycle at 6C rate. 90 Figure 5 19 Electrochemical impedance spectroscopy (EIS) plots of NCM@C and NCM with Li-Nafion binder after the first cycle (a), 10 cycles (b), and 100 cycles (c). 92 Figure 5 20 (a) The relationship between Z’ and square root of frequency (ω-1/2), (b) low-frequency region of NCM and (c) NCM@C with Li-Nafion binder. 95 Figure 5 21 XPS spectra of NCM and NCM@C electrodes with Li-Nafion binder before cycling test. 97 Figure 5 22 XPS spectra of NCM and NCM@C electrodes with Li-Nafion binder after 100 cycles at the 1C charge/discharge. 98 Figure 5 23 XPS spectra of the NCM and NCM@C electrodes with Li-Nafion binder after 100 cycles at 1C charge/discharges (a) Ni 2p (b) Co 2p (c) Mn 2p. 99 Figure 5 24 Picture of Li-Nafion separator. 100 Figure 5 25 Cycle test of Li-Nafion as binder and separator with NCM@C. 101 Figure 5 26 Charge and discharge curves of Li-Nafion as binder and separator with NCM@C. 102 Figure 5 27 37th cycle charge curve of Li-Nafion as binder and separator at 0.05C. 103 Figure 5 28 NCM@C electrode after 38 cycles with Li-Nafion binder and separator. 103 Figure 9 1 Electrochemical impedance spectroscopy (EIS) plots of NCM@C and NCM with PVDF binder after the first 6C charge/discharge. 119 Figure 9 2 (a) The relationship between Z’ and square root of frequency (ω-1/2), (b) low-frequency region of NCM and (c) NCM@C with PVDF binder. 120 Figure 9 3 NCM and NCM@C with Li-Nafion binder at C1s XPS after 6C cycling test. 122 Figure 9 4 The SEM images of NCM@C with Li-Nafion binder (a) (b), NCM with Li-Nafion binder (c) (d), NCM@C with PVDF binder (e) (f), and NCM with PVDF binder (g) (h). 123 Figure 9 5 After 100 cycles at 6C, the lithium metal anode of NCM@C with Li-Nafion binder SEM image (a), EDS mapping images Ni (b) C (c) O (d) F (e) P (f), and corresponding spectra (g). 124 Figure 9 6 After 100 cycles at 6C, the lithium metal anode of NCM@C with PVDF binder SEM image (a), EDS mapping images Ni (b) C (c) O (d) F (e) P (f), and corresponding spectra (g). 125 Figure 9 7 After 100 cycles at 6C, the lithium metal anode of NCM with Li-Nafion binder SEM image (a), EDS mapping images Ni (b) C (c) O (d) F (e) P (f), and corresponding spectra (g). 126 Figure 9 8 XPS spectra of NCM electrodes with Li-Nafion binder after 1C 200 cycles test. 127 表目錄 Table 1 1 Overview of the sequence of components for rechargeable lithium battery3. 2 Table 1 2 Characteristics of commercial Li-ion battery positive electrode materials19. 12 Table 2 1 Cation mixing of LiMnxNi1−xO2 prepared in difference atmosphere29. 16 Table 2 2 Cation mixing of difference LiNi0.8-xCoxMn0.2O2 prepared in air atmosphere30. 16 Table 2 3 Comparison of NCM surface modification methods and research motivation. 44 Table 5 1 Comparison of average voltage during 6C-rate discharge at the 1st, 10th, and 100th cycle using Li-Nafion and PVDF as binders with NCM@C. 72 Table 5 2 Comparison of rate capability between NCM and NCM@C with PVDF binder. 77 Table 5 3 Comparison of charging efficiency between NCM and NCM@C with PVDF binder at different rates. 79 Table 5 4 Comparison of average voltage during 6C-rate discharge at the 1st, 10th, and 100th cycle using PVDF as binders with NCM and NCM@C. 81 Table 5 5 Comparison of rate capability between NCM and NCM@C with Li-Nafion binder. 83 Table 5 6 Comparison of charging efficiency between NCM and NCM@C with Li-Nafion binder at different rates. 85 Table 5 7 Comparison of 1C rate discharge average voltage between NCM and NCM@C at 1st, 10th, 100th cycles. 89 Table 5 8 Comparison of 6C rate discharge average voltage between NCM and NCM@C at 1st, 10th, 100th cycles. 90 Table 5 9 EIS fitting results of the 1C charge/1C discharge tests on NCM and NCM@C with Li-Nafion as the binder following the 1st, 10th, and 100th cycles. 93 Table 5 10 NCM and NCM@C with Li-Nafion binder Li+ Diffusion coefficient calculation results and parameter conditions. 96 Table 5 11 Comparison of capacity and coulombic efficiency for different cycles. 104 Table 9 1 NCM and NCM@C with PVDF binder Li+ Diffusion coefficient calculation results and parameter conditions. 121

    參考文獻
    1. Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
    2. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12 (3), 194-206.
    3. Brandt, K., Historical development of secondary lithium batteries. Solid State Ionics 1994, 69 (3), 173-183.
    4. Winter, M.; Barnett, B.; Xu, K., Before Li Ion Batteries. Chemical Reviews 2018, 118 (23), 11433-11456.
    5. Armand, M. B., Intercalation Electrodes. In Materials for Advanced Batteries, Murphy, D. W.; Broadhead, J.; Steele, B. C. H., Eds. Springer US: Boston, MA, 1980; pp 145-161.
    6. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    7. Dey, A. N.; Sullivan, B. P., The Electrochemical Decomposition of Propylene Carbonate on Graphite. Journal of The Electrochemical Society 1970, 117, 222-224.
    8. Yoshino, A., The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition 2012, 51 (24), 5798-5800.
    9. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources 2001, 100 (1), 101-106.
    10. Berger, R. Rising demand for lithium-ion batteries may lead to shortages in raw material supply. https://content.rolandberger.com/hubfs/07_presse/Roland%20Berger_The%20Lithium-Ion%20Battery%20Market%20and%20Supply%20Chain_2022_final.pdf.
    11. Pillot, C. The Rechargeable Battery Market and Main Trends 2018 – 2030. https://niobium.tech/en/pages/gateway-pages/pdf/technical-briefings/therechargeable-battery-market-and-main-trends-2018-2030.
    12. United Nations Paris Agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
    13. Melin, H. E. In The lithium-ion battery end-of-life market–A baseline study, WEF: World Economic Forum: 2018.
    14. Bouckaert, S.; Pales, A. F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D'Ambrosio, D.; Spencer, T., Net zero by 2050: A roadmap for the global energy sector. 2021.
    15. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863.
    16. Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R., Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques. Journal of Power Sources 2020, 461, 228135.
    17. Mukhopadhyay, A.; Sheldon, B. W., Deformation and stress in electrode materials for Li-ion batteries. Progress in Materials Science 2014, 63, 58-116.
    18. Chae, S.; Choi, S.-H.; Kim, N.; Sung, J.; Cho, J., Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition 2020, 59 (1), 110-135.
    19. Doeff, M. M., BatterybatteryCathodesbatterycathode. In Encyclopedia of Sustainability Science and Technology, Meyers, R. A., Ed. Springer New York: New York, NY, 2012; pp 708-739.
    20. Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N., Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5 (1), 72-88.
    21. Liu, C.; Neale, Z. G.; Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19 (2), 109-123.
    22. Reimers, J. N.; Dahn, J. R., Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Lix CoO2. Journal of The Electrochemical Society 1992, 139 (8), 2091.
    23. Venkatraman, S.; Shin, Y.; Manthiram, A., Phase Relationships and Structural and Chemical Stabilities of Charged Li1 − x CoO2 − δ and Li1 − x Ni0.85Co0.15 O 2 − δ Cathodes. Electrochemical and Solid-State Letters 2003, 6 (1), A9.
    24. Choi, J.; Alvarez, E.; Arunkumar, T. A.; Manthiram, A., Proton Insertion into Oxide Cathodes during Chemical Delithiation. Electrochemical and Solid-State Letters 2006, 9 (5), A241.
    25. Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J., There and Back Again—The Journey of LiNiO2 as a Cathode Active Material. Angewandte Chemie International Edition 2019, 58 (31), 10434-10458.
    26. Zheng, J.; Ye, Y.; Liu, T.; Xiao, Y.; Wang, C.; Wang, F.; Pan, F., Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Accounts of Chemical Research 2019, 52 (8), 2201-2209.
    27. Rossen, E.; Jones, C. D. W.; Dahn, J. R., Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 1992, 57 (3), 311-318.
    28. MacNeil, D. D.; Lu, Z.; Dahn, J. R., Structure and Electrochemistry of Li [ Nix Co1 − 2x Mnx  ]  O 2  ( 0 ⩽ x ⩽ 1 / 2 ) Journal of The Electrochemical Society 2002, 149 (10), A1332.
    29. Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, J.-i.; Okada, M.; Mouri, T., Preparation of LiyMnxNi1−xO2 as a cathode for lithium-ion batteries. Journal of Power Sources 1998, 74 (1), 46-53.
    30. Yoshio, M.; Noguchi, H.; Itoh, J.-i.; Okada, M.; Mouri, T., Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries. Journal of Power Sources 2000, 90 (2), 176-181.
    31. Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J., Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition 2015, 54 (15), 4440-4457.
    32. Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T., Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science 2008, 1 (6), 621-638.
    33. Wang, X.; Ding, Y.-L.; Deng, Y.-P.; Chen, Z., Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. Advanced Energy Materials 2020, 10 (12), 1903864.
    34. Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources 2013, 233, 121-130.
    35. Ohzuku, T.; Ueda, A.; Nagayama, M., Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society 1993, 140 (7), 1862.
    36. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P., Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries. Advanced Energy Materials 2021, 11 (7), 2003404.
    37. Arroyo y de Dompablo, M. E.; Van der Ven, A.; Ceder, G., First-principles calculations of lithium ordering and phase stability on LixNiO2. Physical Review B 2002, 66 (6), 064112.
    38. Arroyo y de Dompablo, M. E.; Ceder, G., On the Origin of the Monoclinic Distortion in LixNiO2. Chemistry of Materials 2003, 15 (1), 63-67.
    39. Entwistle, T.; Sanchez-Perez, E.; Murray, G. J.; Anthonisamy, N.; Cussen, S. A., Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries. Energy Reports 2022, 8, 67-73.
    40. Yang, S.; Wang, X.; Yang, X.; Liu, Z.; Wei, Q.; Shu, H., High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. International Journal of Electrochemistry 2012, 2012, 323560.
    41. van Bommel, A.; Dahn, J. R., Analysis of the Growth Mechanism of Coprecipitated Spherical and Dense Nickel, Manganese, and Cobalt-Containing Hydroxides in the Presence of Aqueous Ammonia. Chemistry of Materials 2009, 21 (8), 1500-1503.
    42. Yu, Z.; Qu, X.; Wan, T.; Dou, A.; Zhou, Y.; Peng, X.; Su, M.; Liu, Y.; Chu, D., Synthesis and Mechanism of High Structural Stability of Nickel-Rich Cathode Materials by Adjusting Li-Excess. ACS Applied Materials & Interfaces 2020, 12 (36), 40393-40403.
    43. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7), A1361.
    44. Ying, J.; Wan, C.; Jiang, C., Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. Journal of Power Sources 2001, 102 (1), 162-166.
    45. Cho, J.; Kim, T.-J.; Kim, Y. J.; Park, B., High-Performance ZrO2-Coated LiNiO2 Cathode Material. Electrochemical and Solid-State Letters 2001, 4 (10), A159.
    46. Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N., Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries. Chemistry of Materials 2005, 17 (14), 3695-3704.
    47. Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T., Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2. Journal of The Electrochemical Society 2014, 161 (6), A920.
    48. Kim, J.; Hong, Y.; Ryu, K. S.; Kim, M. G.; Cho, J., Washing Effect of a LiNi0.83Co0.15Al0.02O2 Cathode in Water. Electrochemical and Solid-State Letters 2006, 9 (1), A19.
    49. Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X., Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. Journal of Power Sources 2013, 222, 318-325.
    50. Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K., Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chemistry of Materials 2018, 30 (3), 1155-1163.
    51. Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.; Nakura, K., Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). Journal of Power Sources 2014, 260, 50-56.
    52. Ren, Z.; Shen, C.; Liu, M.; Liu, J.; Zhang, S.; Yang, G.; Huai, L.; Liu, X.; Wang, D.; Li, H., Improving LiNi0.9Co0.08Mn0.02O2’s cyclic stability via abating mechanical damages. Energy Storage Materials 2020, 28, 1-9.
    53. Jamil, S.; Yu, R.; Wang, Q.; Fasehullah, M.; Huang, Y.; Yang, Z.; Yang, X.; Wang, X., Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. Journal of Power Sources 2020, 473, 228597.
    54. Dixit, M.; Markovsky, B.; Schipper, F.; Aurbach, D.; Major, D. T., Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials. The Journal of Physical Chemistry C 2017, 121 (41), 22628-22636.
    55. Lee, E.; Muhammad, S.; Kim, T.; Kim, H.; Lee, W.; Yoon, W.-S., Tracking the Influence of Thermal Expansion and Oxygen Vacancies on the Thermal Stability of Ni-Rich Layered Cathode Materials. Advanced Science 2020, 7 (12), 1902413.
    56. Wang, S.; Li, K.; Tian, Y.; Wang, J.; Wu, Y.; Ji, S., Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium–ion power battery. Applied Thermal Engineering 2019, 152, 204-214.
    57. Geng, L.; Liu, J.; Wood, D. L., III; Qin, Y.; Lu, W.; Jafta, C. J.; Bai, Y.; Belharouak, I., Probing Thermal Stability of Li-Ion Battery Ni-Rich Layered Oxide Cathodes by means of Operando Gas Analysis and Neutron Diffraction. ACS Applied Energy Materials 2020, 3 (7), 7058-7065.
    58. Wu, F.; Liu, N.; Chen, L.; Su, Y.; Tan, G.; Bao, L.; Zhang, Q.; Lu, Y.; Wang, J.; Chen, S.; Tan, J., Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50-57.
    59. Park, K.-J.; Hwang, J.-Y.; Ryu, H.-H.; Maglia, F.; Kim, S.-J.; Lamp, P.; Yoon, C. S.; Sun, Y.-K., Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical? ACS Energy Letters 2019, 4 (6), 1394-1400.
    60. Liu, Y.; Song, W.; Eldesoky, A.; Harlow, J.; Logan, E. R.; Li, H.; Dahn, J. R., The Impact of Upper Cut-Off Voltage on the Cycling Performance of Li-Ion Cells with Positive Electrodes Having Various Nickel Contents. Journal of The Electrochemical Society 2022, 169 (4), 040531.
    61. Dai, G.; Du, H.; Wang, S.; Cao, J.; Yu, M.; Chen, Y.; Tang, Y.; Li, A.; Chen, Y., Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 with ultrathin and thickness-controlled TiO2 shell via atomic layer deposition technology. RSC Advances 2016, 6 (103), 100841-100848.
    62. Ho, V.-C.; Jeong, S.; Yim, T.; Mun, J., Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. Journal of Power Sources 2020, 450, 227625.
    63. Xia, S.; Huang, W.; Shen, X.; Liu, J.; Cheng, F.; Liu, J.-J.; Yang, X.; Guo, H., Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries. Journal of Energy Chemistry 2020, 45, 110-118.
    64. Doo, S. W.; Lee, S.; Kim, H.; Choi, J. H.; Lee, K. T., Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries. ACS Applied Energy Materials 2019, 2 (9), 6246-6253.
    65. Gan, Q.; Qin, N.; Zhu, Y.; Huang, Z.; Zhang, F.; Gu, S.; Xie, J.; Zhang, K.; Lu, L.; Lu, Z., Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with Enhanced Cyclability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (13), 12594-12604.
    66. Chae, B.-J.; Yim, T., Effect of surface modification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials. Materials Chemistry and Physics 2018, 214, 66-72.
    67. Chae, B.-J.; Song, H. J.; Mun, J.; Yim, T., Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material. J. Electrochem. Sci. Technol 2020, 11 (4), 361-367.
    68. Chae, B.-J.; Yim, T., Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode. Journal of Power Sources 2017, 360, 480-487.
    69. Lestriez, B., Functions of polymers in composite electrodes of lithium ion batteries. Comptes Rendus Chimie 2010, 13 (11), 1341-1350.
    70. Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S., Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews 2018, 118 (18), 8936-8982.
    71. Cho, K. Y.; Kwon, Y. I.; Youn, J. R.; Song, Y. S., Interaction analysis between binder and particles in multiphase slurries. Analyst 2013, 138 (7), 2044-2050.
    72. Zhang, S. S.; Jow, T. R., Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. Journal of Power Sources 2002, 109 (2), 422-426.
    73. Wang, Z.; Tian, S.; Li, S.; Li, L.; Yin, Y.; Ma, Z., Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries. RSC Advances 2018, 8 (36), 20025-20031.
    74. Heitner-Wirguin, C., Recent advances in perfluorinated ionomer membranes: structure, properties and applications. Journal of Membrane Science 1996, 120 (1), 1-33.
    75. Gao, J.; Sun, C.; Xu, L.; Chen, J.; Wang, C.; Guo, D.; Chen, H., Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. Journal of Power Sources 2018, 382, 179-189.
    76. Liang, H. Y.; Qiu, X. P.; Zhang, S. C.; Zhu, W. T.; Chen, L. Q., Study of lithiated Nafion ionomer for lithium batteries. Journal of Applied Electrochemistry 2004, 34 (12), 1211-1214.
    77. Li, S.; Fan, L.; Lu, Y., Rational design of robust-flexible protective layer for safe lithium metal battery. Energy Storage Materials 2019, 18, 205-212.
    78. Gao, J.; Shao, Q.; Chen, J., Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery. Journal of Energy Chemistry 2020, 46, 237-247.
    79. Li, M.; Yang, J.; Shi, Y.; Chen, Z.; Bai, P.; Su, H.; Xiong, P.; Cheng, M.; Zhao, J.; Xu, Y., Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries. Advanced Materials 2022, 34 (5), 2107226.
    80. Yiğitalp, A.; Taşdemir, A.; Alkan Gürsel, S.; Yürüm, A., Nafion‐coated LiNi0. 80Co0. 15Al0. 05O2 (NCA) cathode preparation and its influence on the Li‐ion battery cycle performance. Energy Storage 2020, 2 (5), e154.
    81. Xue, P.; Gao, D.; Chen, S.; Zhao, S.; Wang, B.; Li, L., Improved high-temperature capacity retention of the LiMn2O4 cathode lithium-ion battery by ion exchange polymer coating. RSC Advances 2014, 4 (95), 52624-52628.
    82. Vadivel, S.; Sawangphruk, M., Prelithiated perfluoro-ionomer as an alternative binder for the state-of-the-art Ni-rich LiNi0.8Co0.15Al0.05O2 cathode of next-generation lithium-ion batteries. Journal of Materials Chemistry A 2020, 8 (39), 20714-20724.
    83. Yokoyama, T.; Urayama, K.; Naito, M.; Kato, M.; Yokoyama, T., The Angmill Mechanofusion System and its Applications. KONA Powder and Particle Journal 1987, 5, 59-68.
    84. Geng, C.; Trussler, S.; Johnson, M. B.; Zaker, N.; Scott, B.; Botton, G.; Dahn, J. R., A Low-Cost Instrument for Dry Particle Fusion Coating of Advanced Electrode Material Particles at the Laboratory Scale. Journal of The Electrochemical Society 2020, 167 (11), 110509.
    85. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol 2020, 11 (1), 1-13.
    86. Smith, R.; Fuss, F. K. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector Sensors [Online], 2013, p. 11861-11898.
    87. Yuan, Y.; Lee, T. R., Contact Angle and Wetting Properties. In Surface Science Techniques, Bracco, G.; Holst, B., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 3-34.
    88. Seibt, S.; Ryan, T., Microfluidics for Time-Resolved Small-Angle X-Ray Scattering. 2020.
    89. Kwiecińska, B.; Pusz, S.; Valentine, B. J., Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology 2019, 211, 103203.
    90. Buzzoni, R.; Bordiga, S.; Ricchiardi, G.; Spoto, G.; Zecchina, A., Interaction of H2O, CH3OH, (CH3)2O, CH3CN, and Pyridine with the Superacid Perfluorosulfonic Membrane Nafion: An IR and Raman Study. The Journal of Physical Chemistry 1995, 99 (31), 11937-11951.
    91. Sachan, S.; Ray, C. A.; Perusich, S. A., Lithium ion transport through nonaqueous perfluoroionomeric membranes. Polymer Engineering & Science 2002, 42 (7), 1469-1480.
    92. Radtke, M.; Ignaszak, A., Stretchable current collectors based on carbon embedded in a poly (acrylamide)/poly (N,N-methylenebisacrylamide) hydrogel modified with Nafion 117®. Materials for Renewable and Sustainable Energy 2018, 7 (4), 30.
    93. Oh, S. W.; Park, S. H.; Park, C.-W.; Sun, Y.-K., Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1−xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 2004, 171 (3), 167-172.
    94. Li, L.-j.; Li, X.-h.; Wang, Z.-x.; Guo, H.-j.; Yue, P.; Chen, W.; Wu, L., A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. Powder Technology 2011, 206 (3), 353-357.
    95. Song, J.; Lee, H.; Choo, M.-J.; Park, J.-K.; Kim, H.-T., Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Scientific Reports 2015, 5 (1), 14458.
    96. Wang, H.; Liu, Y.; Li, Y.; Cui, Y., Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews 2019, 2 (4), 509-517.
    97. Gao, W.; Sheng, L.; Chen, J.; Gong, F.; Tang, Z.; Yin, Q.; Yang, K.; Tu, Z.; Li, Y.; Wang, L.; Wang, J.; Tang, Y.; Xu, H.; Wang, C.; He, X., Converting Nafion into Li+-Conductive Nanoporous Materials. Small 2023, n/a (n/a), 2300697.
    98. Liang, H.; Wang, L.; Sheng, L.; Xu, H.; Song, Y.; He, X., Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews 2022, 5 (2), 23.
    99. Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; Liu, N.; Adams, B. D.; Ma, C.; Liu, J.; Zhang, J.-G.; Xu, W., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy 2018, 3 (9), 739-746.
    100. Deng, B.; Wang, H.; Li, X.; Ding, Y.; Sun, D.; Ma, J.; Chen, M.; Chen, T.; Gao, F.; Qu, M.; Peng, G., Effects of Charge Cutoff Potential on an Electrolyte Additive for LiNi0.6Co0.2Mn0.2O2–Mesocarbon Microbead Full Cells. Energy Technology 2019, 7 (4), 1800981.
    101. Wu, F.; Fang, S.; Kuenzel, M.; Mullaliu, A.; Kim, J.-K.; Gao, X.; Diemant, T.; Kim, G.-T.; Passerini, S., Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 2021, 5 (8), 2177-2194.
    102. Zhou, Y.-N.; Yue, J.-L.; Hu, E.; Li, H.; Gu, L.; Nam, K.-W.; Bak, S.-M.; Yu, X.; Liu, J.; Bai, J.; Dooryhee, E.; Fu, Z.-W.; Yang, X.-Q., High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. Advanced Energy Materials 2016, 6 (21), 1600597.
    103. Suryadi, P. N.; Karunawan, J.; Floweri, O.; Iskandar, F., Toward high-rate capability of intercalation cathodes Li-ion batteries, potency for fast-charging application: A materials perspective. Journal of Energy Storage 2023, 68, 107634.
    104. Oh, J.-M.; Geiculescu, O.; DesMarteau, D.; Creager, S., Ionomer Binders Can Improve Discharge Rate Capability in Lithium-Ion Battery Cathodes. Journal of The Electrochemical Society 2011, 158 (2), A207.
    105. Zhu, W.; Zhuang, Z.; Lin, Z.; Yang, Y.; Lin, Y.; Huang, Z., Enhanced electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2 by surface modification with Eu2O3. Ionics 2016, 22 (9), 1533-1540.
    106. Ivanishchev, A. V.; Lee, S.-H.; Kim, J.-J.; Ivanishcheva, I. A.; Nam, S.-C.; Song, J.-H., Li-ion diffusion characteristics of surface modified Ni-rich NCM cathode material. Journal of Electroanalytical Chemistry 2023, 932, 117242.
    107. Xu, J.; Zhang, Q.; Cheng, Y.-T., High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries. Journal of The Electrochemical Society 2015, 163 (3), A401-A405.
    108. Phillip, N. D.; Daniel, C.; Veith, G. M., Influence of Binder Coverage on Interfacial Chemistry of Thin Film LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> Cathodes. Journal of The Electrochemical Society 2020, 167 (4), 040521.
    109. Björklund, E.; Brandell, D.; Hahlin, M.; Edström, K.; Younesi, R., How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi<sub>1/3</sub>Co<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub>Cathodes in Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (13), A3054-A3059.
    110. Hoffmann, E. A.; Fekete, Z. A.; Korugic-Karasz, L. S.; Karasz, F. E.; Wilusz, E., Theoretical and experimental X-ray photoelectron spectroscopy investigation of ion-implanted nafion. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (3), 551-556.
    111. Friedman, A. K.; Shi, W.; Losovyj, Y.; Siedle, A. R.; Baker, L. A., Mapping Microscale Chemical Heterogeneity in Nafion Membranes with X-ray Photoelectron Spectroscopy. Journal of The Electrochemical Society 2018, 165 (11), H733.

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 2028/08/11 (校外網路)
    全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE