簡易檢索 / 詳目顯示

研究生: 林孟樺
Meng-hua Lin
論文名稱: 準穩態分子靜力學奈米級切削模式計算正交切削單晶矽工件之溫度提升分析
Analysis on the calculation of temperature rise for orthogonal cutting of single-crystal silicon workpiece by quasi-steady molecular statics nanoscale cutting model
指導教授: 林榮慶
Zone-ching Lin
口試委員: 傅光華
Kuang-hua Fuh
許覺良
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 分子靜力學奈米級切削單晶矽溫度
外文關鍵詞: molecular statics, nano-cutting, single-crystal silicon, temperature
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展出準穩態分子靜力學奈米級正交切削模式,其除可計算切削力、等效應力與等效應變外,亦可計算被切削工件所提升之溫度;進而可進行被切削工件的溫度分佈分析。本文假設奈米級正交切削時被切削工件溫度的提升是由塑性變形熱與摩擦熱兩種熱源產生。本文之等效應力與等效應變的計算方法為使用三維準穩態奈米靜力學奈米切削模式模擬計算。本文應用力平衡之概念,並以Hooke-Jeeves搜尋法來求解力平衡方程式求出被切削工件每個原子新的位移位置,再推算出切削時切屑的形狀及切削力之大小。求出原子變形位移的位置之後,配合有限元素的形狀函數概念,來求得切削工件之等效應變,再配合的奈米級薄膜拉伸數值實驗之應力-應變曲線經回歸處理後所得之塑流應力-應變(flow stress – strain)關係式,利用塑流曲線來計算元素之等效應變下所產生之等效應力。本文所發展之塑性變形熱可由被切削工件之等效應力與等效應變計算出,進而發展由塑性變形熱產生的提升被切削工件溫度之計算方法。又本文另發展出刀面上的工件原子產生摩擦熱的方法及計算刀面上的工件原子的溫度提升之方法。其方法為將莫氏力分解成刀面上之摩擦力,再計算摩擦力做的功所產生的熱量。再將此熱量再分配給刀面上之工件原子及分配給刀具原子,進而計算刀面上的工件原子的溫度提升之數值。本文再將兩種熱源所產生之溫度提升加總計算後,得到被切削工件各原子提升之總溫度,再進行溫度場分析。此外本文亦進一步將前述所得被切削工件各原子提升之總溫度帶入有限差分熱傳方程式,進行熱量傳遞,亦即為將每一步階產生之總溫度數值帶入熱傳方程式計算所得之工件溫度即為下一步階之工件初始溫度,利用此方法計算出每一步階奈米級正交切削之被切削單晶矽工件溫度場,再進行分析。最後並與前述未考慮有限差分熱傳遞所計算的被切削工件各原子之溫度提升之數值做比較。


    The quasi-steady molecular statics nanoscale orthogonal cutting model developed by the paper not only can calculate cutting force, equivalent stress and equivalent strain, but also can calculate the temperature rise of the cut workpiece, and can further analyze the temperature distribution of the cut workpiece. The paper supposes that during nanoscale orthogonal cutting, the temperature rise of the cut workpiece is produced by two heat sources, plastic deformation heat and friction heat. The calculation method of equivalent stress and equivalent strain is just the simulative calculation using three-dimensional quasi-steady nano-statics nanocutting model. The paper applies the concept of force balance, and uses Hooke-Jeeves direct search method to solve the force balance equation, and obtain the newly displaced position of each atom of the cut workpiece. After that, the paper calculates the shape of chip and size of cutting force during cutting. After the position of atomic deformation and displacement is acquired, it is matched with the shape function concept of finite element to obtain the equivalent strain of the cut workpiece. After the stress-strain curve of nanoscale thin film stretch numerical experiment has undergone regression treatment, the flow stress-strain relational equation is acquired. Plastic flow curve is used to calculate the equivalent stress produced by the equivalent strain of element. The plastic deformation heat developed by the paper can be calculated by the equivalent stress and equivalent strain of the cut workpiece. Furthermore, the calculation method of temperature rise of the cut workpiece produced by plastic deformation heat can be developed. In addition, the paper additionally develops a method for production of friction heat by the workpiece atoms on cutting tool and a calculation method of temperature rise of workpiece atoms on cutting tool. These methods are to decompose Morse force to be friction forces on cutting tool, and then calculate the heat produced by friction force. After that, such heat is distributed to the workpiece atoms on cutting tool, and distributed to the cutting tool atoms. Furthermore, the numerical value of temperature rise of the workpiece atoms on cutting tool is calculated. After the paper has calculated the sum of temperature rise produced by these two heat sources, the total temperature rise of each atom of the cut workpiece is obtained, and the temperature field is further analyzed. Besides, the paper further substitutes the total temperature rise of each atom of the cut workpiece obtained above, in the finite difference heat transfer equation, and carries out heat transfer. It refers that the workpiece temperature calculated by substituting the numerical value of total temperature produced in each step in the heat transfer equation, is just the initial temperature of workpiece in the next step. This method is used to calculate the temperature field of the cut single-crystal silicon workpiece of nanoscale orthogonal cutting in each step, and then analysis is also made. Finally, it is compared with the numerical value of temperature rise of each atom of the cut workpiece calculated by the finite difference heat transfer, which has not been considered above.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 奈米級切削及應力應變的文獻 2 1.2.2 分子力學之文獻 5 1.3 研究動機及目的 8 1.4 本文架構 11 第二章 三維準穩態分子靜力學奈米級切削模式 13 2.1 分子靜力學之基本原理 13 2.2 分子作用力及勢能函數 14 2.3 截斷半徑法 16 2.4 物理參數與無因次化 17 2.5 虎克 吉夫斯(HOOKE-JEEVES)搜尋法 17 2.6 切削力的求解方法 19 2.7 平衡方程式的解 22 2.8 程式模擬步驟: 26 第三章 奈米級等效應變與等效應力和被切削工件熱源溫度及工件溫度提升計算方法 32 3.1 有限元素法 32 3.2 等效應變之計算 32 3.3 等效應力之計算 35 3.4 被切削工件之熱源溫度計算 36 3.5 有限差分熱傳方程式 38 3.5.1 內部元素 39 3.5.2 邊界元素 39 第四章 模擬模型的建構 43 4.1 邊界條件與模擬條件的設定 43 第五章 結果與討論 48 5.1 模擬驗證與比較 48 5.1.1 模擬單晶矽材料切削之切削力驗證與比較 48 5.1.2 模擬單晶矽被切削工件溫度分佈與定性驗證 49 5.2 四件不同刀具對單晶矽材料奈米級正交切削案例探討 52 5.2.1 切削力的分析 52 5.2.2 奈米等級切削狀態的應變與應力之分析 62 5.3 四件不同刀具切削單晶矽材料之溫度分析 67 5.3.1 被切削工件之溫度分佈分析 67 5.3.2 被切削工件熱傳後之溫度分佈分析 71 5.3.3 被切削工件之塑性熱源提升的溫度與摩擦熱源提升的溫度之分析 75 5.3.4 與刀面相鄰之工件原子摩擦力之分析 80 第六章 結論與建議 86 6.1 結論 86 6.2 建議 89 參考文獻 90

    [1]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining,” Ann. CIRP, Vol.41, No. 1, pp.117-120(1990).
    [2]. Childs, T. H. C., and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol. 139, No.2, pp. 235-250(1990).
    [3]. Belak, J., and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proc. Am. Soc., Precision Eng., pp.76-79(1990).
    [4]. Kim, J. D., and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics” ,Journal of Materials Processing Technology , pp. 309-314(1995).
    [5]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon” , Journal of Materials Processing Technology, pp. 407-410(2007).
    [6]. Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study,” Computational Materials Science, pp.434-441(2006).
    [7]. Inamura, T., and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool,” Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, pp. 259-266(1991).
    [8]. Inamura, T., and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond,” Annals of the CIRP, Vol. 41, No. 1, pp. 121-124(1992).
    [9]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, Annals. CIRP, Vol.42, No.1, pp.79-82(1993).
    [10]. Cai, M. B., Li*, X. P., Rahman,M., “ Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation” ,International Journal of Machine Tool & Manufacture pp.75-80(2007).
    [11]. Cai, M. B., Li*, X. P., Rahman,M., “ Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear” , wear ,pp.1459-1466(2007).
    [12]. Cai, M. B., Li*, X. P., Rahman,M., “ Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology,pp.607-612(2007).
    [13]. Tanaka1, H., Shimada, S., “ Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”,Annals of the CIRP, Vol.56/1(2007).
    [14]. Tang, Q. H., “ MD simulation of dislocation mobility during cutting with diamond tip on silicon”,Materials Science in Semiconductor Processing,Vol.10 ,pp.270-275(2007).
    [15]. Shimada, S.,“Molecular dynamics analysis of nanometric cutting process”, Ann. CIRP, Vol.29, No.283, pp.6(1995).
    [16]. The, J. H. L. and Scrutton, R. F., “A Theoretical Analysis of Temperature Distributions in the Hight Speed Forging of Hot Steel, “ Trans. ASME, J. Enging. Materials and Technology, Vol.114, pp.218-226(1992).
    [17]. Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique,” Nanotechnology, Vol. 15, pp. 510-519(2004).
    [18]. Irving, J. H., and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.18, pp. 817-829(1950).
    [19]. Kwon, Y.W., and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems” Computers and Structures,Vol.82, September/October, Computational Structures Technology, pp. 1993-2000(2004).
    [20]. IGOR Ye. Telitchev, OLEG Vinogradov” A method for quasi-static analysis of topologically variable lattice structures” , International Journal of Computational Methods, Vol. 3, pp. 71-81, March(2006).
    [21]. Jeng, Y. R. and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol. 126, pp. 767-774(2004).
    [22]. Hu, S. Y., Ludwig, M., Kizler, P. and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol. 6, pp. 567–586 (1998).
    [23]. Saraev, D., Kizler, P., Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Simul. Mater. Sci.,pp.1013–1023(1999).
    [24]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,國立中正大學機械工程研究所,碩士論文,民國九十五年。
    [25]. 黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,國立台灣科技大學大學機械工程研究所博士論文,民國九十五年。
    [26]. Girifalco, L. A., and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, pp. 687-690(1959).
    [27]. Rahman, A., “Correlations in motions of atoms in liquid atom” Phys. Rev.,A,vol.136,pp.405-411(1964).
    [28]. Reklaitis, G. V., "Engineering Optimization: Methods and Application".
    [29]. Lin, Z. C. and Huang, J. C., “3D nano-scale cutting model for nickel material,” Journal of Materials Processing Technology, pp.27–36 (2007)
    [30]. Aly, M. F., Ng, E., Veldhuis, S. C. and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model,” International Journal of Machine Tool & Manufacture, pp.1729-1737(2007).
    [31]. Komanduri, R., Ch, N., rasekaran and Raff, L. M., “ Molecular Dynamics Simulation of the Nanometric Cutting of Silicon,” Philosphimcaagl Azinbe, Vol. 81, No. 12, pp. 1989-2019(2001)
    [32]. Lin, Z. C., Pan, W. C. and Lo, S. P., “A Study of Orthogonal Cutting with Tool Flank Wear and Sticking Behavior on the Chip-Tool Interface,” Journal of Materials Processing Technology, Vol.52, No.2-4, pp.524-538. (SCI, EI)(1995)

    無法下載圖示 全文公開日期 2016/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE