簡易檢索 / 詳目顯示

研究生: 陳慶
Dave - C. Chen
論文名稱: 圓柱與壁面交接處馬蹄型流場結構之控制
Controlling Horseshoe Flow Structure around Juncture of a Circular Cylinder and Wall
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
none
陳佳堃
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 346
中文關鍵詞: 交界處流場馬蹄形渦漩近表面尾流流場
外文關鍵詞: Juncture flow, necklace vortex, near-surface wake
相關次數: 點閱:233下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在一圓柱體與壁面交接處的上游,由於逆向壓力梯度與邊界層流動共同作用的結果,會產生馬蹄狀渦旋。這些馬蹄狀渦旋時常會在應用時造成負面的影響。本研究試圖探討一圓柱體與壁面交界處上游的流動特性以及兩種流動控制技術對這些馬蹄狀渦旋的影響。在一拖曳式水槽中,使用雷射光頁輔助質點軌跡可視化實驗方法,配合連續照相技術,探討圓柱與壁面交接處垂直對稱面與水平面之流體流動狀態,識別自然狀態流動以及加上流動控制設施後的流體特徵結構。結果顯示,在無加入流動控制設施時的自然狀態,一圓柱體與壁面交接處的上游,會依雷諾數與邊界層厚度的不同而產生一至三個馬蹄狀渦流。當在圓柱上游壁面附近加入安置一支小直徑的圓桿時,會在圓柱與小直徑圓桿之間引致數個渦流,無法消除馬蹄狀渦漩。若在圓柱體與壁面交界處安裝一個特殊設計的三角錐,則依三角錐的幾何參數(水平張角、垂直仰角、水平長度)與雷諾數的不同,會在圓柱上游區域三角錐的前端附近產生三種流體特徵結構:(1)渦流(vortical flow)、(2)逆流(reverse flow)、(3)順流(forward flow)。當產生「渦流」時,可能出現一或兩顆馬蹄狀渦流,顯示三角錐的設計未達效應;當產生「順流」時,顯示馬蹄狀渦流已完全被消除;當產生「逆流」時,流場的結構是介於「渦流」與「順流」之間的過渡狀態。所以,如果將三角錐的幾何參數調整在「順流」模態時,即可以達到消除馬蹄狀渦流的目的。


The flow around the upstream area of the juncture of a wall and an obstacle extruding from the wall may present interesting vortical flow structure which was commonly termed the horseshoe or necklace vortices. The vortical flow structure usually induced negative effects in the applications such as the heat transfer efficiency of heat exchangers, scour of river bed for the bridge columns, aerodynamic performance of wings, etc. There was a necessity to eliminate the vortical flow structure around the obstacle/wall juncture. This study focused on characterizing the effects of two flow control technologies on the flow characteristics upstream the circular cylinder/flat plate juncture. The laser-light-sheet flow visualization technique and the time-evolving photographing method were employed to obtain the dynamic images of flow patterns. The first method was the rod-control method—a small circular rod placing horizontally in front of the juncture. The second method was the upstream filling method—a pyramid-shaped small block was installed at the juncture. The rod-control method was proved ineffectively in eliminating the horseshoe vortices. Three characteristic flow patterns (vortical flow, reverse flow, and forward flow) appeared when the pyramid block was installed, depending on the geometric configurations and dimensions of the pyramid block as well as the Reynolds number. Operating the pyramid block in the vortical flow regime, the horseshoe vortical flow structure still existed. Operating the pyramid block in the forward flow regime, the horseshoe flow structure was completely eliminated. The reverse flow regime was a status for transition from the vortical flow regime to forward flow regime.

摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 第二章 實驗設備、儀器與方法 第三章 上游圓桿控制法的流場 第四章 三角錐控制法的流場 第五章 結論 參考文獻

Baker, C. J., “The laminar horseshoe vortex,” Journal of Fluid Mechanics, Vol. 95, No. 2, 1979, pp. 347-367.
[2] Baker, C. J., “The turbulent horseshoe vortex,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 6, No. 1-2, 1980, pp. 9-23.
[3] Baker, C. J., “The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, No.3, 1985, pp. 263-274.
[4] Seal, C.V., Smith, C. R., “Visualization of a mechanism for three-dimensional interaction and near-wall eruption,” Journal of Fluid Mechanics, Vol. 394, 1999, pp. 193-203.
[5] Sumner, D., Heseltine, J. L., Dansereau, O. J. P., “Wake structure of a finite circular cylinder of small aspect ratio,” Experiments in Fluids, Vol. 37, No. 5, 2004, pp. 720-730.
[6] Pattenden, R. J., Turnock, S. R., Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane,” Experiments in Fluids, Vol. 39, No.1, 2005, pp.10-21.
[7] Rodriguez y Dominguez, M., Romero-Mendez, R., Ramos-Palau, M., Perez-Gutierrez, F. G., “The laminar horseshoe vortex upstream of a short-cylinder confined in a channel formed by a pair of parallel plates,” Journal of Visualization, Vol. 9, No.3, 2006, pp. 309-318.
[8] Martinuzzi, R., Tropea, C., “The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow,” Journal of Fluid Mechanics, Vol. 115, No. 1, 1993, pp. 85-92.
[9] Seal, C. V., Smith, C. R., Akin, O., Rockwell, D., “Quantitative characteristics of a laminar, unsteady necklace vortex system at a rectangular block-flat plate juncture,” Journal of Fluid Mechanics, Vol. 286, Aug. 1995, pp. 117-135.
[10] Chou, J. H., Chao, S. Y., “Branching of a horseshoe vortex around surface-mounted rectangular cylinders,” Experiments in Fluids, Vol. 28, No. 5, 2000, pp. 394-402.
[11] Smith, F. T., Gajjar, J., “Flow past wing-body junctions,” Journal of Fluid Mechanics, Vol. 144, Jun. 1984, pp. 191-215.
[12] Devenport, W. J., Simpson, R. L., “Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction,” Journal of Fluid Mechanics, Vol. 210, Apr. 1990, pp. 23-25.
[13] Olcmen, S. M., Simpson, R. L., “An experimental study of a three-dimensional pressure-driven turbulent boundary layer,” Journal of Fluid Mechanics, Vol. 290, July 1995, pp. 225-262.
[14] Simpson, R. L., “Junction flows,” Annual Review of Fluid Mechanics, Vol. 33, Jun, 2001, pp.415-443.
[15] Dargahi, B., “Controlling mechanism of local scouring,” Journal of Hydraulic Engineering, Vol. 116, No. 10, 1990, pp. 1197-1214.
[16] Ahmed, F., Rajaratnam, N., “Flow around bridge piers,” Journal of Hydraulic Engineering, Vol. 124, No. 3, 1998, pp. 288-300.
[17] Melville, B. W., Raudkivi, A. J., “Flow characteristics in local scour at bridge piers,” Journal of Hydraulic Research, Vol. 15, No. 4, 1977, pp. 373-380.
[18] Melville, B. W., Chiew, Y. M., “Time scale for local scour at bridge piers,” Journal of Hydraulic Engineering, Vol. 125, No. 1, 1999, pp. 59-65.
[19] Wang, J. J., Zhang, P. F., Lu, S. F., Wu, K., “Drag reduction of a circular cylinder using an upstream rod,” Flow Turbulence and Combustion, Vol. 76, Dec. 2006, pp. 83-101.
[20] Wei, Q. D., and Cheng, G., Du, X. D., “An experimental study on the structure of juncture flows,” Journal of Visualization, Vol. 3, No. 4, 2001, pp. 341-348.
[21] Wei, Q. D., Wang, J. M., Chen, G., Lu, Z. B., Bi, W. T., “Modification of junction flows by altering the section shapes of the cylinders,” Journal of Visualization, Vol. 11, No. 2, 2008, pp. 115-124.
[22] 林瑋城,圓柱與壁面交界處附近之馬蹄形流場結構,國立台灣科技大學機械工程研究所碩士論文,台北,台灣,2013。
[23] Huang, R. F., Hsu, C. H., Lin, W. C., “Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate,” Experimental Thermal and Fluid Science, Vol. 55, Nov. 2014, pp. 187-199.

無法下載圖示 全文公開日期 2019/06/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE