簡易檢索 / 詳目顯示

研究生: 賴禹辰
Yu-Chen Lai
論文名稱: 採用非占先有限佇列與非飽和流量之無線人體區域網路之效能評估
Performance Evaluation of Wireless Body Area Networks with Non-Preemptive Finite Queue and Non-Saturated Traffic
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 林永松
王乃堅
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 107
中文關鍵詞: 無線人體區域網路非飽和流量有限佇列非占先式優先權酬載大小平均等候時間
外文關鍵詞: Wireless Body Area Networks, non-saturated traffic, finite queue, non-preemptive priority, payload size, average waiting time
相關次數: 點閱:235下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今,人類社會正遭逢醫療人力短缺。此外,在醫療領域中的不同資料封包會有不同的服務品質需求,例如: 與體溫相關的資料封包可以週期性的傳送,然而心跳速率的封包必須即時的傳輸。由IEEE 802.15.6任務群組提出的無線人體區域網路不僅對於不同封包可以提供適當的服務品質,而且提供了高達每秒10個百萬位元的傳輸速率。在醫療領域上,無線人體區域網路不僅可以用在術後復原的即時監控,也可以用來遠程監控慢性疾病。如此一來,人們可以更有效率與及時接受治療。不同於大多數的研究,假設封包的抵達程序是飽和流量,也就是說系統處於一直有封包要進行傳輸的狀態,而我們考慮了非飽和的流量情境。明確地說,我們假設封包的抵達程序是波以松。除此之外,在實際的系統中,當系統正在傳輸封包時,需要有一個佇列容納新抵達的封包,否則如果抵達的當下佇列已經容納不下新的封包時,新的封包就會被阻塞。更重要的是,當系統的負載越來越重時,在佇列中的等候時間會比在媒體進接控制層中的服務時間長。在我們的研究中,我們考慮了由多於一個節點以星狀拓樸形成的無線人體區域網路,這個網路中的每一個節點都擁有各自的有限佇列以容納兩種不同的優先權封包直到他們被成功傳輸或丟棄。我們著重於如何改進高優先權封包的等候時間。我們採用非占先式優先權的排隊法則。此外,我們考量了兩種情境:對稱及非對稱封包大小。在對稱的情境下,每一種優先權的封包都有相同的封包大小,然而在非對稱的情境下,高優先權封包的封包大小是小於低優先權封包的封包大小。我們推導所考慮系統的解析模型,而相關的平衡方程式是藉由疊代演算法求解。我們研究了不同系統參數對於我們感興趣的效能指標的影響,這些系統參數包含了高優先權抵達速率、低優先權抵達速率、系統大小、酬載大小、超訊框大小。我們所感興趣的效能指標包含了阻塞機率、成功送達率、系統平均封包數、佇列平均封包數、系統平均等候時間、佇列平均等候時間。最後但並非最不重要的,我們利用電腦模擬來驗證解析模型的準確性。


Nowadays our society is suffering from serious lacking of medical personnel. Furthermore, in the medical field different data packets may have different QoS requirements, e.g., the body temperature packets may be transmitted at regular time intervals, whereas the heart beat packets need to be sent at once. The wireless body area network (WBAN) is proposed by IEEE 802.15.6 to provide not only appropriate QoS to different data packets, but also a data rate up to 10Mbps. With WBAN, we can enforce not only real-time monitoring of postoperative recovery, but also telemonitoring of chronic disease. In this way, people can receive treatment in time and more efficiently. Unlike most studies on WBAN assuming that the packet arrival process is saturated, i.e., there is always a packet ready for transmission, we consider the non-saturated traffic cases. Specifically, it is assumed that the packet arrival process is Poisson. Furthermore, in practical systems, a queue is needed to accommodate any newly arrived packet finding the system is busy transmitting a packet; otherwise the packet will be lost. More importantly, when the system load becomes more heavy, the waiting time in queue will be bigger than the service time in MAC layer. In our study, we consider a WBAN with more than one node in the star topology, where each node is equipped with a finite queue to accommodate packets of two priority types until they are transmitted or dropped. We focus on how to improve the waiting time of high-priority packets. The non-preemptive priority queueing discipline is adopted. We consider two scenarios: symmetric and non-symmetric. In the symmetric scenarios, the payload sizes of the packets of different priority types are the same, whereas in the non-symmetric scenarios the payload size of the high-priority packets is smaller than that of the low-priority packets. The analytical models of the considered systems are derived and the associated balance equations are solved with an iterative algorithm. We study the effect of various system parameters on the performance measures of interest, e.g., the high priority arrival rate, the low priority arrival rate, the system size, the payload size, and the superframe size. The performance measures of interest are blocking probability, throughput, average number of packets in system, average number of packets in queue, average waiting time in system and average waiting time in queue. Last but not least, the computer simulation is utilized to verify the accuracy of the analytical model.

中文摘要 Abstract Contents 1. Introduction 2. System Model 2.1 MAC layer sub-system 2.1.1 The analytical model 2.1.2 Average service time 2.3 Queue sub-system 2.4 Iterative algorithm 2.5 Performance measures 3. Simulation model 3.1 Main program 3.2 Arrival subprogram 3.3 Backoff subprogram 3.4 Ready-to-Send subprogram 3.5 Departure subprogram 3.6 Superframe subprogram 3.7 Performance measures 4. Numerical results 4.1 Symmetric scenario 4.1.1 High priority arrival rate 4.1.2 Low priority arrival rate 4.1.3 System size 4.1.4 Payload size 4.1.5 Superframe size 4.1 Non-symmetric scenario 4.2.1 High priority arrival rate 4.2.2 Low priority arrival rate 4.2.3 System size 4.2.4 Superframe size 5. Conclusions Reference

[1] V. Potdar, A. Sharif & E. Chang, "Wireless Sensor Networks: A Survey," 2009 International Conerence on Advanced Information Networking and Applications Workshop, pp.636 – 641, May 2009.

[2] J. Corchado, J. Bajo, D. Tapia, and A. Abraham, “Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare,” IEEE Transactions. Inf. Technol. Biomed., vol. 14, no. 2, pp. 234–240, Mar. 2010.

[3] Kyung Sup Kwak, Sana Ullah, Niamat Ullah, “An Overview of IEEE 802.15.6 Standard,” 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, Italy, pp. 1-6, Nov. 2010.

[4] S. Sarkar, S. Misra, B. Bandyopadhyay, C. Chakraborty, and M. S. Obaidat “Performance Analysis of IEEE 802.15.6 MAC Protocol under Non-Ideal Channel Conditions and Saturated Traffic Regime”, IEEE Transactions on Computers, vol. 64, no. 10, pp. 2912-2925, Oct. 2015.

[5] S. Rashwand, J. Misic, and H. Khazaei, “Performance analysis of IEEE 802.15.6 under saturation condition and error-prone channel,” IEEE WCNC 2011, pp.1167-1172, Mar. 2011.

[6] Byoung Hoon Jung, Raja Usman Akbar, and Dan Keun Sung, “Throughput, Energy Consumption, and Energy Efficiency of IEEE 802.15.6 Body Area Network (BAN) MAC Protocol,” 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, pp.584-589, Sep. 2012.

[7] Changle Li, Xiaoyan Geng, Jingjing Yuan and Tingting Sun, “Performance Analysis of IEEE 802.15.6 MAC Protocol in Beacon Mode with Superframes,” KSII Transactions on Internet and Information Systems, vol. 7, no. 5, pp.1108-1130, May 2013.

[8] Minglei Shu, Dongfeng Yuan, Changfang Chen, Yinglong Wang, Chongqing Zhang, “Modeling and Performance Analysis of MAC Protocol for WBAN with Finite Buffer,” KSII Transactions on Internet and Information Systems, vol. 9, no. 11, pp.4436-4452, Nov. 2015

[9] S. Ullah and K. S. Kwak, “Throughput and Delay Limits of IEEE 802.15.6,” IEEE Wireless Communications and Networking Conference, pp. 174–178, Mar. 2011.

[10] G. Bianchi, “IEEE 802.11—Saturation Throughput Analysis,” IEEE Communication Letters, vol. 2, no. 12, pp. 318–320, Dec. 1998.

[11] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communication, vol. 18, no. 3, pp. 535–547, Mar. 2000.

[12] IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, IEEE Std., Feb. 2012.

QR CODE