簡易檢索 / 詳目顯示

研究生: 紀茗科
Ming-Ke Ji
論文名稱: 新型態鋰離子電池添加劑研究探討
The Investigation of New Type of Additive in Lithium Ion Battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
Quoc-Thai Pham
許榮木
Jung-Mu Shu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 鋰離子電池正極材料添加劑熱穩定性充/放電性能
外文關鍵詞: lithium-ion battery, cathode material, additive, thermal stability, charge/discharge performance properties
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章、緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 鋰離子電池工作原理 2 1.2.2 正極材料 3 1.2.3 負極材料 4 1.2.4 隔離膜 4 1.2.5 電解液 5 第二章 、文獻回顧 6 2.1 鋰離子電池安全性與實驗動機 6 2.2 鋰離子安全性改善方法 9 2.2.1 改質隔離膜 9 2.2.2 電解液添加劑 16 2.2.3 正極材料之塗層 20 2.2.4 正極材料之元素摻雜 26 2.2.5 正極添加劑 31 第三章 、實驗藥品、儀器與方法 37 3.1 實驗藥品 37 3.2 實驗儀器 38 3.3 電極漿料製備 39 3.3.1 Blank電極漿料製備 39 3.3.2 添加劑電極漿料製備 39 3.4 電池極片製備 39 3.5鈕扣型電池(Coin Cell)組裝 40 3.6 DSC樣品製備 40 3.7 TGA樣品製備 41 3.8 SEM樣品製備 41 第四章 、結果與討論 42 4.1 極片DSC分析 42 4.2 正極極片TGA分析 44 4.3 循環伏安法分析 46 4.3.1 BLK NCM622循環伏安法 46 4.3.2 LA21-NCM622循環伏安法 47 4.3.3 1% Benchmark-NCM622循環伏安法 49 4.4 常溫下電池充放電、循環壽命 51 4.4.1 常溫下第一圈充放電 51 4.4.2 常溫下充放電(第1~100圈) 52 4.4.3 常溫下循環壽命 55 4.5 常溫下電化學交流阻抗分析 57 4.6 電池倍率性能 61 4.7 高溫(55 ℃)下電池充放電、循環壽命 62 4.7.1 高溫(55 ℃)下電池充放電 62 4.7.2 高溫(55 ℃)下電池循環壽命 64 4.8 高溫(55 ℃)下電化學交流阻抗分析 66 4.9 場發射掃描式電子顯微鏡 69 第五章 、結論 72 參考文獻 73

    1. Feng, X., J. Sun, M. Ouyang, F. Wang, X. He, L. Lu, and H. Peng, Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. Journal of Power Sources, 2015. 275: p. 261-273.
    2. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
    3. Wang, Q., B. Mao, S.I. Stoliarov, and J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 2019. 73: p. 95-131.
    4. Zhu, J.-P., Q.-b. Xu, and G. Yang, Synthesis and electrochemical properties of modification LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery. Journal of Nanoscience Nanotechnology, 2012. 12(3): p. 2534-2538.
    5. Liu, H.K., G.X. Wang, Z. Guo, J. Wang, and K. Konstantinov, Nanomaterials for lithium-ion rechargeable batteries. Journal of Nanoscience Nanotechnology, 2006. 6(1): p. 1-15.
    6. Jo, Y.N., K. Prasanna, S.J. Park, and C.W. Lee, Characterization of Li-rich xLi2MnO3•(1− x) Li [MnyNizCo1− y− z] O2 as cathode active materials for Li-ion batteries. Electrochimica Acta, 2013. 108: p. 32-38.
    7. Ilango, P.R., T. Subburaj, K. Prasanna, Y.N. Jo, and C.W. Lee, Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol–gel process. Materials Chemistry and Physics, 2015. 158: p. 45-51.
    8. Min, K., S.-W. Seo, Y.Y. Song, H.S. Lee, and E. Cho, A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials. Physical Chemistry Chemical Physics, 2017. 19(3): p. 1762-1769.
    9. Zhang, L., H. Wang, L. Wang, and Y. Cao, High electrochemical performance of hollow corn-like LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium-ion batteries. Applied Surface Science, 2018. 450: p. 461-467.
    10. Zhang, Y., H. Xie, H. Jin, Q. Zhang, Y. Li, X. Li, K. Li, and C. Bao, Research Status of Spinel LiMn2O4 Cathode Materials for Lithium Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2020. 603(1): p. 012051.
    11. Kasireddy, S.R., B. Gangaja, S.V. Nair, and D. Santhanagopalan, Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochimica Acta, 2017. 250: p. 359-367.
    12. Wang, H.-Q., F.-Y. Lai, Y. Li, X.-H. Zhang, Y.-G. Huang, S.-J. Hu, and Q.-Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochimica Acta, 2015. 177: p. 290-297.
    13. Tsai, Y.-W., R. Santhanam, B.-J. Hwang, S.-K. Hu, and H.-S. Sheu, Structure stabilization of LiMn2O4 cathode material by bimetal dopants. Journal of Power Sources, 2003. 119: p. 701-705.
    14. Tang, D., Y. Sun, Z. Yang, L. Ben, L. Gu, and X. Huang, Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chemistry of Materials, 2014. 26(11): p. 3535-3543.
    15. Qing, R., M.-C. Yang, Y.S. Meng, and W. Sigmund, Synthesis of LiNixFe1− xPO4 solid solution as cathode materials for lithium ion batteries. Electrochimica Acta, 2013. 108: p. 827-832.
    16. Delacourt, C., P. Poizot, S. Levasseur, and C. Masquelier, Size effects on carbon-free LiFePO4 powders: The key to superior energy density. Electrochemical Solid State Letters, 2006. 9(7): p. A352.
    17. Whittingham, M.S., Ultimate limits to intercalation reactions for lithium batteries. Chemical Reviews, 2014. 114(23): p. 11414-11443.
    18. Zaghib, K., A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J. Goodenough, and C. Julien, Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. Journal of Power Sources, 2013. 232: p. 357-369.
    19. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188.
    20. Yao, J., S. Bewlay, K. Konstantionv, V. Drozd, R. Liu, X. Wang, H. Liu, and G. Wang, Characterisation of olivine-type LiMnxFe1− xPO4 cathode materials. Journal of Alloys Compounds, 2006. 425(1-2): p. 362-366.
    21. Novikova, S. and A. Yaroslavtsev, Cathode materials based on olivine lithium iron phosphates for lithium-ion batteries. Reviews on Advanced Materials Science, 2017. 49(2): p. 129-139.
    22. Herle, P.S., B. Ellis, N. Coombs, and L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials, 2004. 3(3): p. 147-152.
    23. Yamada, A. and S.-C. Chung, Crystal Chemistry of the Olivine-Type Li (Mn y Fe1− y) PO 4 and (Mn y Fe1− y) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries. Journal of The Electrochemical Society, 2001. 148(8): p. A960.
    24. Molenda, J., W. Ojczyk, and J. Marzec, Electrical conductivity and reaction with lithium of LiFe1− yMnyPO4 olivine-type cathode materials. Journal of Power sources, 2007. 174(2): p. 689-694.
    25. Xu, B., D. Qian, Z. Wang, and Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
    26. Susai, F.A., D. Kovacheva, A. Chakraborty, T. Kravchuk, R. Ravikumar, M. Talianker, J. Grinblat, L. Burstein, Y. Kauffmann, and D.T. Major, Improving performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies. ACS Applied Energy Materials, 2019. 2(6): p. 4521-4534.
    27. Qian, J., W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J.-G. Zhang, High rate and stable cycling of lithium metal anode. Nature Communications, 2015. 6(1): p. 1-9.
    28. Wang, H., Y. Liu, Y. Li, and Y. Cui, Lithium metal anode materials design: interphase and host. Electrochemical Energy Reviews, 2019. 2(4): p. 509-517.
    29. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    30. Zhao, Y., X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, and X. Sun, Recent developments and understanding of novel mixed transition‐metal oxides as anodes in lithium ion batteries. Advanced Energy Materials, 2016. 6(8): p. 1502175.
    31. Lu, Y., L. Yu, and X.W.D. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 2018. 4(5): p. 972-996.
    32. Nitta, N. and G. Yushin, High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles. Particle & Particle Systems Characterization, 2014. 31(3): p. 317-336.
    33. Lee, H., M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014. 7(12): p. 3857-3886.
    34. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
    35. Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
    36. Francis, C.F., I.L. Kyratzis, and A.S. Best, Lithium‐Ion Battery Separators for Ionic‐Liquid Electrolytes: A Review. Advanced Materials, 2020. 32(18): p. 1904205.
    37. Zhu, G., X. Jing, D. Chen, and W. He, Novel composite separator for high power density lithium-ion battery. International Journal of Hydrogen Energy, 2020. 45(4): p. 2917-2924.
    38. Miao, R., B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang, and Q. Li, PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. Journal of Power Sources, 2008. 184(2): p. 420-426.
    39. Costa, C.M., Y.-H. Lee, J.-H. Kim, S.-Y. Lee, and S. Lanceros-Méndez, Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
    40. Tan, S., Y.J. Ji, Z.R. Zhang, and Y. Yang, Recent Progress in Research on High‐Voltage Electrolytes for Lithium‐Ion Batteries. ChemPhysChem, 2014. 15(10): p. 1956-1969.
    41. Taggougui, M., M. Diaw, B. Carré, P. Willmann, and D. Lemordant, Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery. Electrochimica acta, 2008. 53(17): p. 5496-5502.
    42. Jow, T.R., K. Xu, O. Borodin, and M. Ue, Electrolytes for lithium and lithium-ion batteries. Vol. 58. 2014: Springer.
    43. Ravdel, B., K. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, and C. Campion, Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003. 119: p. 805-810.
    44. Wang, Q., L. Jiang, Y. Yu, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
    45. Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012. 208: p. 210-224.
    46. Golubkov, A.W., S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G. Fauler, A. Thaler, and V. Hacker, Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge. RSC Advances, 2015. 5(70): p. 57171-57186.
    47. Lyu, P., X. Liu, J. Qu, J. Zhao, Y. Huo, Z. Qu, and Z. Rao, Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020.
    48. Chombo, P.V. and Y. Laoonual, A review of safety strategies of a Li-ion battery. Journal of Power Sources, 2020. 478: p. 228649.
    49. Feng, X., M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
    50. Ghiji, M., V. Novozhilov, K. Moinuddin, P. Joseph, I. Burch, B. Suendermann, and G. Gamble, A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020. 13(19): p. 5117.
    51. Kong, L., C. Li, J. Jiang, and M.G. Pecht, Li-ion battery fire hazards and safety strategies. Energies, 2018. 11(9): p. 2191.
    52. Arora, P. and Z. Zhang, Battery separators. Chemical Reviews, 2004. 104(10): p. 4419-4462.
    53. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    54. Wang, Z., H. Xiang, L. Wang, R. Xia, S. Nie, C. Chen, and H. Wang, A paper-supported inorganic composite separator for high-safety lithium-ion batteries. Journal of Membrane Science, 2018. 553: p. 10-16.
    55. Wang, L., Z. Wang, Y. Sun, X. Liang, and H. Xiang, Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. Journal of Membrane Science, 2019. 572: p. 512-519.
    56. Xia, L., D. Wang, H. Yang, Y. Cao, and X. Ai, An electrolyte additive for thermal shutdown protection of Li-ion batteries. Electrochemistry communications, 2012. 25: p. 98-100.
    57. Bae, S.-Y., E.-G. Shim, and D.-W. Kim, Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries. Journal of Power Sources, 2013. 244: p. 266-271.
    58. Zhu, L., T.-F. Yan, D. Jia, Y. Wang, Q. Wu, H.-T. Gu, Y.-M. Wu, and W.-P. Tang, LiFePO4-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells. Journal of The Electrochemical Society, 2019. 166(3): p. A5437.
    59. Li, Y., X. Liu, D. Ren, H. Hsu, G.-L. Xu, J. Hou, L. Wang, X. Feng, L. Lu, and W. Xu, Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020. 71: p. 104643.
    60. Guo, B., J. Zhao, X. Fan, W. Zhang, S. Li, Z. Yang, Z. Chen, and W. Zhang, Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochimica Acta, 2017. 236: p. 171-179.
    61. Lipson, A.L., J.L. Durham, M. LeResche, I. Abu-Baker, M.J. Murphy, T.T. Fister, L. Wang, F. Zhou, L. Liu, and K. Kim, Improving the Thermal Stability of NMC 622 Li-Ion Battery Cathodes through Doping During Coprecipitation. ACS Applied Materials & Interfaces, 2020. 12(16): p. 18512-18518.
    62. Park, K.-S., D. Im, A. Benayad, A. Dylla, K.J. Stevenson, and J.B. Goodenough, LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety. Chemistry of Materials, 2012. 24(14): p. 2673-2683.
    63. Wang, F.-M., T. Alemu, N.-H. Yeh, X.-C. Wang, Y.-W. Lin, C.-C. Hsu, Y.-J. Chang, C.-H. Liu, C.-I. Chuang, and L.-H. Hsiao, Interface Interaction Behavior of Self-Terminated Oligomer Electrode Additives for a Ni-Rich Layer Cathode in Lithium-Ion Batteries: Voltage and Temperature Effects. ACS Applied Materials & Interfaces, 2019. 11(43): p. 39827-39840.
    64. Duan, L., F. Zhang, and L. Wang, Alkali-Ion Batteries. 2016.
    65. Kim, H., M.G. Kim, H.Y. Jeong, H. Nam, and J. Cho, A new coating method for alleviating surface degradation of LiNi0. 6Co0. 2Mn0. 2O2 cathode material: nanoscale surface treatment of primary particles. Nano Letters, 2015. 15(3): p. 2111-2119.
    66. Yu, Y., J. Wang, P. Zhang, and J. Zhao, A detailed thermal study of usual LiNi0. 5Co0. 2Mn0. 3O2, LiMn2O4 and LiFePO4 cathode materials for lithium ion batteries. Journal of Energy Storage, 2017. 12: p. 37-44.
    67. Chen, Z., C. Liu, G. Sun, X. Kong, S. Lai, J. Li, R. Zhou, J. Wang, and J. Zhao, Electrochemical degradation mechanism and thermal behaviors of the stored LiNi0. 5Co0. 2Mn0. 3O2 cathode materials. ACS Applied Materials & Interfaces, 2018. 10(30): p. 25454-25464.
    68. Liu, J., X. Jiang, Y. Zhang, P. Dong, J. Duan, Y. Zhang, Y. Luo, Z. Fu, Y. Yao, and C. Zhu, Improvement of high-voltage electrochemical performance of surface modified LiNi0. 6Co0. 2Mn0. 2O2 cathode by La2O3 coating. International Journal of Electrochemical Science, 2018. 13: p. 9816-9825.
    69. Yang, Z., X. Guo, W. Xiang, W. Hua, J. Zhang, F. He, K. Wang, Y. Xiao, and B. Zhong, K-doped layered LiNi0. 5Co0. 2Mn0. 3O2 cathode material: towards the superior rate capability and cycling performance. Journal of Alloys Compounds, 2017. 699: p. 358-365.
    70. Fu, J., D. Mu, B. Wu, J. Bi, X. Liu, Y. Peng, Y. Li, and F. Wu, Enhanced electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochimica Acta, 2017. 246: p. 27-34.
    71. Wang, S., S. Chen, W. Gao, L. Liu, and S. Zhang, A new additive 3-Isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage. Journal of Power Sources, 2019. 423: p. 90-97.
    72. He, R., A. Wei, L. Zhang, W. Li, X. Bai, and Z. Liu, Studies on the electrochemical properties of nickel-rich Li1. 02Ni0. 6Co0. 2Mn0. 2O2 materials for lithium-ion batteries via cerium modifications. Solid State Ionics, 2019. 337: p. 56-62.
    73. Shaju, K., G.S. Rao, and B. Chowdari, Performance of layered Li (Ni1/3Co1/3Mn1/3) O2 as cathode for Li-ion batteries. Electrochimica Acta, 2002. 48(2): p. 145-151.
    74. Sim, S.-J., S.-H. Lee, B.-S. Jin, and H.-S. Kim, Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Scientific Reports, 2019. 9(1): p. 1-8.
    75. Park, S., C. Yoon, S. Kang, H.-S. Kim, S.-I. Moon, and Y.-K. Sun, Synthesis and structural characterization of layered Li [Ni1/3Co1/3Mn1/3] O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004. 49(4): p. 557-563.
    76. Li, W., X. Liu, Q. Xie, Y. You, M. Chi, and A. Manthiram, Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study. Chemistry of Materials, 2020. 32(18): p. 7796-7804.
    77. Cesiulis, H., N. Tsyntsaru, A. Ramanavicius, and G. Ragoisha, The study of thin films by electrochemical impedance spectroscopy, in Nanostructures and thin films for multifunctional applications. 2016, Springer. p. 3-42.
    78. Tao, T., C. Chen, Y. Yao, B. Liang, S. Lu, and Y. Chen, Enhanced electrochemical performance of ZrO2 modified LiNi0. 6Co0. 2Mn0. 2O2 cathode material for lithium ion batteries. Ceramics International, 2017. 43(17): p. 15173-15178.
    79. Zhu, X., Z. Wang, C. Wang, and L. Huang, Overcharge investigation of large format lithium-ion pouch cells with Li (Ni0. 6Co0. 2Mn0. 2) O2 cathode for electric vehicles: degradation and failure mechanisms. Journal of The Electrochemical Society, 2018. 165(16): p. A3613.
    80. Hua, W., J. Zhang, Z. Zheng, W. Liu, X. Peng, X.-D. Guo, B. Zhong, Y.-J. Wang, and X. Wang, Na-doped Ni-rich LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Transactions, 2014. 43(39): p. 14824-14832.
    81. Park, K.J., M.J. Choi, F. Maglia, S.J. Kim, K.H. Kim, C.S. Yoon, and Y.K. Sun, High‐capacity concentration gradient Li [Ni0. 865Co0. 120Al0. 015] O2 cathode for lithium‐ion batteries. Advanced Energy Materials, 2018. 8(19): p. 1703612.
    82. Fan, X., G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, and Y. Yang, Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 2020. 70: p. 104450.
    83. Li, L., Z. Zhang, S. Fu, and Z. Liu, F127-assisted synthesis of LiNi0. 5Co0. 2Mn0. 3O1. 99F0. 01 as a high rate and long lifespan cathode material for lithium-ion batteries. Applied Surface Science, 2019. 476: p. 1061-1071.
    84. Xue, L., Y. Li, B. Xu, Y. Chen, G. Cao, J. Li, S. Deng, Y. Chen, and J. Chen, Effect of Mo doping on the structure and electrochemical performances of LiNi0. 6Co0. 2Mn0. 2O2 cathode material at high cut-off voltage. Journal of Alloys Compounds, 2018. 748: p. 561-568.

    無法下載圖示 全文公開日期 2031/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE