簡易檢索 / 詳目顯示

研究生: 湯宇宸
Yu-Chen Tang
論文名稱: 穿越方形金屬管之無線電力傳輸
Wireless Power Transmission Across Square Metal Tube
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 無線功率傳輸穿越金屬屏障集膚效應
外文關鍵詞: Wireless power transmission, crossing the metal barrier, skin effect
相關次數: 點閱:205下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用磁場耦合與電場耦合的方式將能量穿越方形金屬管之無線電力傳輸,利用銅箔與絕緣膠帶在方形金屬管上形成兩薄膜電容器,兩薄膜電容所產生的電場讓電流流經金屬管壁,兩薄膜電容之間金屬管壁視為磁場耦合的初級側繞組,並在管內依據耦合磁場面積配置一個高導磁接收線圈作為二次側繞組。主電路為全橋相移式與串聯-串聯諧振轉換器所組成之電路架構。
    文中分別採用方形不鏽鋼管與方形鐵管作為硬體架構並進行比較,在使用方形不鏽鋼管作為硬體架構時,電流會因集膚效應的影響導致分布在方形不鏽鋼管的轉角處,使得接收線圈不易設計,本文使用方形鐵管作為硬體架構時,可改善電流集中在轉角處的問題,且接收線圈可以在方型鐵管的平面處得到較大的功率。
    為了考慮高頻集膚效應對兩種方形金屬管的電流分布,本研究使用ANSYS Maxwell模擬軟體建立3D模型用以分析,並利用MATLAB/SIMULINK系統電路進行模擬。最終電路實測使用數位訊號處理器(TMS320F28069)作為控制核心,並具有共振頻率追蹤的功能,透過模擬與實驗驗證本文提出之方法可行性,結果將於本論文中呈現。


    This thesis used a wireless method to transfer electrical power across a square metal tube by combining with magnetic field coupling and electric field coupling. Two film-type capacitors on the square metal tube are set up by two copper foils with isolating layers. The electric field generated by the capacitors provides current path to flow between the two film capacitors through the wall of the metal tube. The wall of the metal tube between the two film capacitors acts as the primary winding of a coupling inductor. According to the area of the coupled magnetic field, a secondary winding receiving coil with high-permeability core was deployed inside the tube. The electric power received by the secondary winding is harvested by the main circuit which consists of a phase-shifted H-bridge converter and a series- series resonant circuit.
    Both square stainless steel tube and square iron tube were investigated in this thesis. For square stainless steel tube, it is found that the current which flows along the wall will concentrate at the corner part of the tube due to skin effect. This phenomenon is inconvenient for the design of receiving coil. This study also found that the current distribution of the iron tube is more evenly than stainless steel tube. In addition, more power can be transferred to receiving coil.
    In order to consider the high-frequency skin effect, this thesis established a 3D model to analyze the current distribution of both metal tubes by ANSYS Maxwell software. Moreover, the proposed system was simulated by using MATLAB/SIMULINK software. This thesis used a digital signal processor (TMS320F28069) as controller with automatic resonant frequency tracking. Both simulation and experimental results showed the correction and validity of the proposed scheme.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 內容大綱 3 第二章 無線電力傳輸穿越金屬之原理與分析 4 2.1 無線電力傳輸的發展與應用 4 2.2 無線電力傳輸技術的種類 6 2.3 諧振電路補償架構之分析與選 用 10 2.3.1 RLC串聯諧振介紹 11 2.3.2 諧振補償電路架構之選用 13 2.4 克服金屬屏障能量傳輸阻斷技術之原理 20 2.4.1 電場耦合式無線電力傳輸技術特點及應用 20 2.4.2 電容與電感耦合式無線電力傳輸技術介紹 23 2.5 全橋相移 SS諧振轉換 器動作與控制原理 24 第三章 系統架構設計與分析 30 3.1 集膚效應之介紹 30 3.2 不鏽鋼與鐵材質受集膚效應之電磁特性模擬 31 3.2.1 平板屏障 31 3.2.2 L形屏障 33 3.2.3 U形屏障 34 3.2.4 方管形屏障 36 3.3 耦合電容之設計 38 3.4 耦合電感之設計 42 3.5 電容與電感耦合式架構之電磁特性模擬與分析 47 3.5.1 耦合電容之電磁特性模擬與分析 47 3.5.2 耦合電感之電磁特性模擬與分析 53 3.6 磁場檢測空氣線圈與接收端線圈之設計 59 3.6.1 磁場檢測空氣線圈之設計 59 3.6.2 接收端線圈之設計 61 第四章 模擬軟體與硬體電路 63 4.1 電磁場有限元素分析模擬軟體 63 4.2 硬體架構硬體架構 65 4.2.1 系統主電系統主電路架構路架構 66 4.2.2 系統功率開關驅動電路架構系統功率開關驅動電路架構 67 4.2.3 金屬屏障架構金屬屏障架構 68 4.3 軟體規劃軟體規劃 72 第五章 實作與量測結果實作與量測結果 76 5.1 方形金屬管之磁場強度量測方形金屬管之磁場強度量測 76 5.1.1 方形不鏽鋼管不同位置下之磁場強度方形不鏽鋼管不同位置下之磁場強度 78 5.1.2 方形鐵管不同位置下之磁場強度方形鐵管不同位置下之磁場強度 82 5.2 電容與電感耦合式無線電力傳輸模擬電容與電感耦合式無線電力傳輸模擬 87 5.3 電容與電感耦合式無線電力傳輸實測電容與電感耦合式無線電力傳輸實測 96 5.3.1 接收線圈互感值之量測接收線圈互感值之量測 97 5.3.2 接收線圈接收功率之量測接收線圈接收功率之量測 99 第六章 結論與未來方向結論與未來方向 105 6.1 結論結論 105 6.2 未來方向未來方向 105 參考文獻 106

    [1]G. A. Covic and J. T. Boys, "Inductive Power Transfer," Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
    [2]G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green and J. T. Boys, "The design of a contact-less energy transfer system for a people mover system," PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, 2000, pp. 79-84 vol.1.
    [3]N.A. Keeling, G. A. Covic and J. T. Boys, "A Unity-Power-Factor IPT Pickup for High-Power Applications," in IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 744-751, Feb. 2010.
    [4]M. Ali and H. Nugroho, "Effective power amplifier of wireless power transfer system for consumer electronics," 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, 2016, pp. 1-5.
    [5]T. P. Delhave, N. André, S. Gilet, C. Gimeno, L. A. Francis and D. Flandre, "High-efficiency wireless power transfer for mm-size biomedical implants," 2017 IEEE SENSORS, Glasgow, 2017, pp. 1-3.
    [6]R. Shadid and S. Noghanian, "Hybrid power transfer and wireless antenna system design for biomedical implanted devices," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, 2018, pp. 1-2.
    [7]N. Ha-Van and C. Seo, "Butterfly-Shaped Transmitting Coil for Wireless Power Transfer System in Millimeter-Sized Biomedical Implants," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1-4.
    [8]Dongwook Kim, Jaehyoung Park, Kibeom Kim, Hyun Ho Park and Seungyoung Ahn, "Propulsion and control of implantable micro-robot based on wireless power transfer," 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1-4.
    [9]U. K. Madawala and D. J. Thrimawithana, "A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems," in IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4789-4796, Oct. 2011.
    [10]J. Sallan J. L. Villa, A. Llombart and J. F. Sanz, "Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge," in IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2140-2149, June 2009.
    [11]T. -. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35 GHz rectennas," in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 6, pp. 1259-1266, June 1992.
    [12]S. Sasaki and K. Tanaka, "Wireless power transmission technologies for solar power satellite," 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 2011, pp. 3-6.
    [13]Y. Endo and Y. Furukawa, "Proposal for a new resonance adjustment method in magnetically coupled resonance type wireless power transmission," 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 2012, pp. 263-266
    [14]H. Omori, M. Nakaoka and Y. Iga, "A new resonant IPT-wireless EV charging system with single-ended quasi-resonant inverter for home use," 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, UT, 2013, pp. 1-7.
    [15]M. Behnamfar, H. Javadi and E. Afjei, "A dynamic CPT system LC Compensated with a six-plate capacitive coupler for wireless charging of electric vehicle in motion," 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 2020, pp. 1-6. 
    [16]L. Huang, A. P. Hu, A. K. Swain, and Y. Su, “Accurate steady-state modeling of capacitive-coupling interface of capacitive power transfer systems with cross-coupling,” Wireless Power Transfer, vol. 3, no. 1, pp. 53–62, 2016.
    [17]O. Imoru, A. Jassal, H. Polinder, E. Nieuwkoop, J. Tsado and A. A. Jimoh, "An Inductive Power Transfer through metal object," 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, 2013, pp. 246-251
    [18]C. Van Pham, A. Pham and C. S. Gardner, "Development of Helical circular coils for wireless through-metal inductive power transfer," 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, 2017, pp. 1-3.
    [19]M. Yamakawa, Y. Mizuno, J. Ishida, K. Komurasaki, H. Koizumi, "Wireless power transmission into a space enclosed by metal walls using magnetic resonance coupling", Wireless Eng. Technol., vol. 05, no. 1, pp. 19-24.
    [20]S. Ahyoune, J. Sieiro, M. N. Vidal and J. M. López-Villegas, "Skin effect formula for metal strips in laminated substrates," 2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), Barcelona, Spain, 2017, pp. 1-4.
    [21]H. Zhang, J. Lee, N. M. Iyer and L. Cao, "New analytical equations for skin and proximity effects in interconnects operated at high frequency," 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Toyama, 2017, pp. 39-41.
    [22]I. Iramnaaz, H. Schellevis, B. Rejaei, R. Fitch and Y. Zhuang, "Self-Biased Low Loss Conductor Featured With Skin Effect Suppression for High Quality RF Passives," in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4139-4142, Nov. 2012.
    [23]W. Zhou, Y. Su, L. Huang, X. Qing and A. P. Hu, "Wireless Power Transfer Across a Metal Barrier by Combined Capacitive and Inductive Coupling," in IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4031-4041, May 2019.
    [24]黃柏翰,「穿越管狀金屬之電容與電感耦合式無線電力傳輸」。 碩士論文,國立臺灣科技大學電機工程系研究所,2019
    [25]J. Gozalvez, "WiTricity-The Wireless Power Transfer [Mobile Radio]," in IEEE Vehicular Technology Magazine, vol. 2, no. 2, pp. 38-44, June 2007
    [26]G. Lee, B. H. Waters, Y. G. Shin, J. R. Smith and W. S. Park, "A Reconfigurable Resonant Coil for Range Adaptation Wireless Power Transfer," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 624-632, Feb. 2016.
    [27]T. Campi, S. Cruciani and M. Feliziani, "Magnetic shielding of wireless power transfer systems," 2014 International Symposium on Electromagnetic Compatibility, Tokyo, Tokyo, 2014, pp. 422-425
    [28]F. Zhang, S. Dong and X. Yin, "Analysis of the wireless charging's multiple coils structure and efficiency based on magnetic field," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016, pp. 1-4
    [29]T. M. Mostafa, D. Bui, A. Muharam, R. Hattori and A. P. Hu, "A Capacitive Power Transfer System with a CL Network for Improved System Performance," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1-4.
    [30]S. Sasaki and K. Tanaka, "Wireless power transmission technologies for solar power satellite," 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Uji, Kyoto, 2011, pp. 3-6.
    [31]D. Rozario, N. A. Azeez and S. S. Williamson, "Comprehensive review and comparative analysis of compensation networks for Capacitive Power Transfer systems," 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, 2016, pp. 823-829.
    [32]Chwei-Sen Wang, O. H. Stielau and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
    [33]X. Chen-yang, L. Chao-wei and Z. Juan, "Analysis of power transfer characteristic of capacitive power transfer system and inductively coupled power transfer system," 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, 2011, pp. 1281-1285.
    [34]C. Liu, A. P. Hu and N. -. C. Nair, "Modelling and analysis of a capacitively coupled contactless power transfer system," IET Power Electronics, vol. 4, no. 7, pp. 808-815, Aug. 2011
    [35]R. Jegadeesan, K. Agarwal, Y. Guo, S. Yen and N. V. Thakor, "Wireless Power Delivery to Flexible Subcutaneous Implants Using Capacitive Coupling," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 280-292, Jan. 2017.
    [36]R. Erfani, F. Marefat and P. Mohseni, "Biosafety Considerations of a Capacitive Link for Wireless Power Transfer to Biomedical Implants," 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, 2018, pp. 1-4.
    [37]T. M. Mostafa, A. Muharam and R. Hattori, "Wireless battery charging system for drones via capacitive power transfer," 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp. 1-6.
    [38]C. Mi, "High power capacitive power transfer for electric vehicle charging applications," 2015 6th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, 2015, pp. 1-4.
    [39]R. Sedehi, D. Budgett, A. P. Hu and D. McCormick, "Effects of Conductive Tissue on Capacitive Wireless Power Transfer," 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montréal, QC, 2018, pp. 1-5.
    [40]C. Liu, A. P. Hu and N. C. Nair, "Coupling study of a rotary Capacitive Power Transfer system," 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, pp. 1-6.
    [41]柯育寬。「全橋相移式串聯諧振直流/直流轉換器之控制IC」。碩士論文,國立臺灣科技大學電子工程系,2010。
    [42]陳泳麟。「具定電壓/定電流輸出模式之全橋相移式串聯諧振轉換器」。碩士論文,國立臺灣科技大學電子工程系,2014。
    [43]S. Ahyoune, J. Sieiro, M. N. Vidal and J. M. López-Villegas, "Skin effect formula for metal strips in laminated substrates," 2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), Barcelona, 2017, pp. 1-4
    [44]Tsong-Shing Lee, “無線充電技術,” 科學發展月刊, 第540期, pp.62-67, 12月號, 2017
    [45]張哲瑋。「穿越圓盤式金屬屏障之無線電力傳輸」。碩士論文,國立臺灣科技大學電機工程系,2020。

    QR CODE