簡易檢索 / 詳目顯示

研究生: 章利安
Ian Joseph Chandra
論文名稱: 一種用於分散式電子病歷系統的安全會話密鑰更新和傳輸機制
A Secure Session Key Update And Transmission Mechanism For Decentralized Electronic Medical Record Systems
指導教授: 鄭瑞光
Ray-Guang Cheng
王瑞堂
Jui-Tang Wang
口試委員: 陳仁暉
Jen-Hui Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 45
中文關鍵詞: session keyelectronic health recorddecentralized systemsblockchainencryption
外文關鍵詞: session key, electronic health record, decentralized systems, blockchain, encryption
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子病歷 (EMR) 是以數字格式存儲的患者醫療文檔,可讓授權用戶立即安全地獲取信息。 EMR交換可以大大提高患者記錄的完整性,以提供準確的診斷,減少重複測試,避免醫生用藥錯誤。在許多研究中,去中心化一直是一種在醫院之間提供 EMR 交換協議的常用方法。 EMR 共享對傳輸過程中的數據隱私和安​​全性或數據存儲方式提出了挑戰,尤其是在公共存儲中。加密對於維護 EMR 數據的隱私和安全是必要的,而維護加密密鑰的機制對於保持密碼安全至關重要。我們為去中心化的 EMR 系統設計了一種開源的會話密鑰更新和傳輸機制,以安全地改進 EMR 數據交換。基於性能測試和用戶體驗評估,我們的開源機制以最小的缺陷提高了 EMR 系統的交換性和安全性。


    Electronic medical record (EMR) is a patient's medical document stored in digital format to make the information instantly and securely available to authorized users. The EMR exchange can greatly improve the completeness of patient records to provide an accurate diagnosis, decrease duplicate testing, and avoid medication errors by doctors. Decentralization has been a common approach in many kinds of research to provide an EMR exchange protocol between hospitals. EMR sharing poses challenges regarding data privacy and security during the transmission process or the way data is stored, especially in public storage. Encryption is necessary to maintain the privacy and security of EMR data, and a mechanism to maintain the encryption key is essential to keep the cipher secure. We designed an open-source session key update and transmission mechanism for a decentralized EMR system to improve the EMR data exchange securely. Based on the performance testing and user experience evaluation, our open-source mechanism improves the EMR system's exchanges and security with minimum drawbacks.

    Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . ii Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Decentralized Database . . . . . . . . . . . . . . . . . . . 7 2.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . 9 2.4 Elliptic Curve Diffie-Hellman . . . . . . . . . . . . . . . 10 2.5 Hashing Algorihtm . . . . . . . . . . . . . . . . . . . . . 10 3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 System Use Cases . . . . . . . . . . . . . . . . . . . . . . 17 4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Front-end Side . . . . . . . . . . . . . . . . . . . 19 4.2.2 Back-end Side . . . . . . . . . . . . . . . . . . . 20 4.3 System Flow . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.1 EMR Storing Mechanism . . . . . . . . . . . . . 22 4.3.2 EMR Retrieval Mechanism . . . . . . . . . . . . . 23 4.3.3 EMR Access Granting Mechanism . . . . . . . . . 24 4.3.4 EMR Verification Mechanism . . . . . . . . . . . 25 4.4 Cryptography and Security . . . . . . . . . . . . . . . . . 26 4.4.1 Symmetric Encryption . . . . . . . . . . . . . . . 27 4.4.2 Hashing Algorithm . . . . . . . . . . . . . . . . . 27 4.4.3 Session Key Update Mechanism . . . . . . . . . . 28 4.4.4 QR-based Key Transmission . . . . . . . . . . . . 30 5 Experimental Results And Analysis . . . . . . . . . . . . . . . . 32 5.1 Cryptography activity performance . . . . . . . . . . . . . 33 5.2 Blockchain Performance . . . . . . . . . . . . . . . . . . 35 5.3 Decentralized Database Performance . . . . . . . . . . . . 37 5.4 User Experience . . . . . . . . . . . . . . . . . . . . . . . 39 5.5 Security Analaysis . . . . . . . . . . . . . . . . . . . . . 41 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    [1] S. E. Moser and J. F. Bober, “Chapter 9 - using health information technology for optimal patient care and service,” in Textbook of Family Medicine, pp. 120–123, Elsevier, 2012.
    [2] A. Bahga and V. K. Madisetti, “A cloud-based approach for interoperable electronic health records (ehrs),” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 5, pp. 894–906, 2013.
    [3] D. A. Penoyer, K. H. Cortelyou-Ward, A. M. Noblin, T. Bullard, S. Talbert, J. Wilson, B. Schafhauser, and J. G. Briscoe, “Use of electronic health record documentation by healthcare workers in an acute care hospital system,” J. Healthc. Manag., vol. 59, pp. 130–144, Mar. 2014.
    [4] M. Wang, C. Lau, F. Matsen, and Y. Kim, “Personal health information management system and its application in referral management,” IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 3, pp. 287–297, 2004.
    [5] A. Al Omar, A. K. Jamil, M. S. H. Nur, M. M. Hasan, R. Bosri, M. Z. A. Bhuiyan, and M. S. Rahman, “Towards a transparent and privacy-preserving healthcare platform with blockchain for smart cities,” in 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1291–1296, 2020.
    [6] A. Roehrs, C. A. da Costa, R. da Rosa Righi, S. J. Rigo, and M. H. Wichman, “Toward a model for personal health record interoperability,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 2, pp. 867–873, 2019.
    [7] W. Ministry of Health and N. Sport, “Benefits of e-health.” Available at ”https://www.government.nl/topics/ehealth/benefits-of-ehealth” (accessed Aug. 1, 2021).
    [8] S. S. Hospital, “Benefits of ehealth.” Available at ”https://ststephenshospital.com.au/
    about-us/ehealth-and-the-digital-hospital/benefits-of-ehealth” (accessed Aug. 1,
    2021).
    [9] T. O. Abolade, “The benefits and challenges of e-health applications in developing nations: A review,” 12 2018.
    [10] E. W. Ford, B. W. Hesse, and T. R. Huerta, “Personal health record use in the united states: Forecasting future adoption levels,” J Med Internet Res, vol. 18, p. e73, Mar. 2016.
    [11] J. Quinn, “An HL7 (health level seven) overview,” J. AHIMA, vol. 70, pp. 32–4; quiz 35–6, July 1999.
    [12] R. H. Dolin and L. Alschuler, “Approaching semantic interoperability in health level seven,” J Am Med Inform Assoc, vol. 18, pp. 99–103, Nov. 2010.
    [13] S. Warren, J. Yao, R. Schmitz, and J. Lebak, “Reconfigurable point-of-care systems designed with interoperability standards,” in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 3270–3273, 2004.
    [14] O. for Civil Rights, “Summary of the hipaa security rule.” Available at ”https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations” (accessed Jul. 7, 2021).
    [15] H. L. S. International, “Fast healthcare interoperability resource, 6.0.” Available at ”https://www.hl7.org/fhir/secpriv-module.html” (accessed Jul. 29, 2021).
    [16] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Blockchain for secure ehrs sharing of mobile cloud based e-health systems,” IEEE Access, vol. 7, pp. 66792–66806, 2019.
    [17] A. Shahnaz, U. Qamar, and A. Khalid, “Using blockchain for electronic health records,” IEEE Access, vol. 7, pp. 147782–147795, 2019.
    [18] X. Liu, Z. Wang, C. Jin, F. Li, and G. Li, “A blockchain-based medical data sharing and protection scheme,” IEEE Access, vol. 7, pp. 118943–118953, 2019.
    [19] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-based applications: Current status, classification and open issues,” Telematics and Informatics, vol. 36, pp. 55–81, 2019.
    [20] O. Novo, “Blockchain meets iot: An architecture for scalable access management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, 2018.
    [21] M. Zhaofeng, W. Xiaochang, D. K. Jain, H. Khan, G. Hongmin, and W. Zhen, “A blockchain-based trusted data management scheme in edge computing,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2013–2021, 2020.
    [22] R. de Best, “Statista.” Available at ”https://www.statista.com/statistics/647523/
    worldwide-bitcoin-blockchain-size/” (accessed Aug. 30, 2022).
    [23] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “Blochie: A blockchain-based platform for healthcare information exchange,” in 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 49–56, 2018.
    [24] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain technology: Architecture, consensus, and future trends,” in 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557–564, 2017.
    [25] M. Swan, Blockchain. Sebastopol, CA: O’Reilly Media, Feb. 2015.
    [26] A. Antonopoulos, Mastering Bitcoin 2e. Sebastopol, CA: O’Reilly Media, June 2017.
    [27] T. Xue, Y. Yuan, Z. Ahmed, K. Moniz, G. Cao, and C. Wang, “Proof of contribution: A modification of proof of work to increase mining efficiency,” in 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), IEEE, July 2018.
    [28] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” in 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858, 2016.
    [29] V. Buterin, “Ethereum white paper: A next generation smart contract decentralized application platform.”
    [30] J. Kwon, “Tendermint: Consensus without mining.” Available at ”https://tendermint.com/static/docs/tendermint.pdf” (accessed Mar. 17, 2022).
    [31] B. developers, “Bigchaindb.” Available at ”https://www.bigchaindb.com/” (accessed Mar. 15, 2022).
    [32] V. R. Joan Daemen, Information Security And Cryptography. Berlin, Germany: Springer, 2020.
    [33] D. H. Yang, “Elliptic curve.” Available at ”http://www.herongyang.com/EC-Cryptography/” (accessed Aug. 2, 2022).
    [34] S.-H. Lee and K.-W. Shin, “An efficient implementation of sha processor including three hash algorithms (sha-512, sha-512/224, sha-512/256),” in 2018 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1–4, 2018.
    [35] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain for medical data access and permission management,” in 2016 2nd International Conference on Open and Big Data (OBD), pp. 25–30, 2016.
    [36] R. Guo, H. Shi, D. Zheng, C. Jing, C. Zhuang, and Z. Wang, “Flexible and efficient blockchain-based abe scheme with multi-authority for medical on demand in telemedicine system,” IEEE Access, vol. 7, pp. 88012–88025, 2019.
    [37] J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-based secure storage and access scheme for electronic medical records in ipfs,” IEEE Access, vol. 8, pp. 59389–59401, 2020.
    [38] Y. Cheng, J. Ren, Z. Wang, S. Mei, and J. Zhou, “Attributes union in cp-abe algorithm for large universe cryptographic access control,” in 2012 Second International Conference on Cloud and Green Computing, pp. 180–186, 2012.
    [39] Y.-W. Hwang and I.-Y. Lee, “A study on cp-abe-based medical data sharing system with key abuse prevention and verifiable outsourcing in the iomt environment,” Sensors, vol. 20, no. 17, 2020.
    [40] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “Medshare: Trust-less medical data sharing among cloud service providers via blockchain,” IEEE Access, vol. 5, pp. 14757–14767, 2017.
    [41] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain for data sharing and collaboration in mobile healthcare applications,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5, 2017.
    [42] M. Corporation, “Crypto - mdn web docs.” Available at ”https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API” (accessed Apr. 22, 2022).
    [43] S. Kumari, P. Chaudhary, C.-M. Chen, and M. K. Khan, “Questioning key compromise attack on ostad-sharif et al.’s authentication and session key generation scheme for healthcare applications,” IEEE Access, vol. 7, pp. 39717–39720, 2019.
    [44] E. Vosberg, “Cryptojs documentation.” Available at ”https://cryptojs.gitbook.io/docs” (accessed Apr. 22, 2022).

    無法下載圖示 全文公開日期 2025/09/26 (校內網路)
    全文公開日期 2026/09/26 (校外網路)
    全文公開日期 2026/09/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE