簡易檢索 / 詳目顯示

研究生: 陳俊原
Jun-Yuan Chen
論文名稱: 紫膜生物光電晶片檢測牙斑菌之特異性與即時監測牙菌斑生長之探討
Investigation of the Streptococcus mutans detection specificity and the real-time monitoring dental-biofilm formation of purple membrane-based photoelectric biochips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 蔡伸隆
Shen-Long Tsai
曾文祺
Wen-Chi Tseng
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 152
中文關鍵詞: 紫膜牙斑菌生物膜
外文關鍵詞: purple membrane, Streptococcus mutans, biofilm
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

嗜鹽古生菌Halobacterium salinarum紫膜(purple membrane, PM)內具有一種視黃醛蛋白,被稱為細菌視紫質(bacteriorhodopsin, BR)。其受光激發後會使PM膜內外產生質子梯度差,可用以產生光電流。承襲先前本實驗室利用PM晶片光電流訊號強弱和入射光強度呈正向關係以及微生物會散射光之事實所開發出可針對變種鏈球菌(Streptococcus mutans)進行探測之抗體-PM與核酸適體-PM二種複合晶片,本研究首先探討在晶片製程中各加入glycine填補步驟是否可降低此兩種晶片之非特異性吸附問題。結果發現在未加入glycine填補前,S. mutans抗體-PM複合晶片檢測106 CFU/mL S. mutans時,晶片光電流下降比例可達53%;但同時對相同濃度Escherichia coli與Lactobacillus acidophilus檢測時,晶片之光電流下降百分比也分別有21%與24%;但在製程中加入glycine填補後,對E. coli與L. acidophilus檢測後之晶片光電流下降比例則分別下降至8%與7%,證明可大幅降低晶片的非特異性吸附現象。然而S. mutans核酸適體-PM複合晶片對106 CFU/mL E. coli與L. acidophilus檢測時,加入glycine填補步驟後晶片之光電流下降百分比則由原先的14%與19%僅下降至12%與15%,效果較不明顯。

此外,本研究也設計並製作PM光電晶片雙層即時監測微流道,以使PM晶片在緩慢電解液注流下可即時監測上方微流中S.mutans於培養基注流情況下於基材上形成生物薄膜之情況。首先比較修飾有尾端具有不同官能基自排性單分子膜的ITO玻璃表面上生長生物薄膜之形成情形,發現S. mutans於帶正電且較疏水的基材表面上最容易形成具有三維結構的成熟生物薄膜。其次,在胺基化基材上鍵結抗生物薄膜之胜肽後,發現確實能有效抑制S. mutans生物薄膜之形成,且其表面鍵結量越高,效果越好。因此本實驗證實此雙層PM晶片微流道系統可應用於生物薄膜形成之監測。


Bacteriorhodopsin (BR) is a retinal protein residing in Halobacterium salinarum purple membrane (PM). When illuminated, BR pumps a proton gradient across PM, leading to photocurrent generation. To improve the selectivity of antibody-PM and aptamer-PM composite sensor chips for Streptococcus mutans detection, which were previously developed by using the principles that PM photocurrent correlates linearly with illumination intensity and that bacteria scatter light, this study used glycine to block the residual active moiety of the homobifunctional crosslinker fabricated on PM-coated chips for recognition-element conjugation. For the detection of 106 CFU/mL bacteria, without prior glycine blocking, the antibody-PM chips exhibited not only a 53 % photocurrent reduction on S. mutans detection, but also 21% and 24% reductions for E. coli and L. acidophilus, respectively. On the other hand, with prior glycine blocking, the photocurrent reductions of the chips decreased to 8% and 7% on E. coli and L. acidophilus detections, respectively, indicating selectivity improvement of the antibody-PM chips. The effect of glycine blocking was less pronounced with the aptamer-PM chips because the photocurrent reductions decreased from 14% and 19% to only 12% and 15% for E. coli and L. acidophilus, respectively.

Furthermore, a double-decked microfluidics device was designed and constructed to real-time monitor the formation of S. mutans biofilm on the substrate placed in the upper deck with a PM-coated photoelectric chip mounted in the lower deck. A diluted growth medium and an electrolyte buffer were injected into the upper and lower decks, respectively. The comparison of ITO glass modified with self-assembled monolayers with different terminal groups suggested that the hydrophobic and positively charged surface most easily caused S. mutans to form a mature 3D-strucutred biofilm. Moreover, the anti-biofilm peptides coated on the amine-terminated substrate effectively inhibited biofilm formation, with the inhibition efficiency increasing with their coating amounts. Therefore, the results confirmed the feasibility of real-time monitoring biofilm formation with the developed double-decked microfluidics.

中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2-1 細菌視紫質(bacteriorhodopsin, BR) 3 2-1-1 Halobacterium salinarum與BR簡介 3 2-1-2 BR結構 4 2-1-3 BR光循環 5 2-1-4 BR光電響應 6 2-1-5 PM生物親和性單層定向固定化 10 2-1-6 PM晶片的微生物檢測應用 12 2-2 變種鏈球菌(Streptococcus mutans) 13 2-2-1 S. mutans簡介 13 2-2-2 S. mutans檢測方法 14 2-2-2-1 微生物學檢測法 14 2-2-2-2 免疫學檢測法 15 2-2-2-3 分子生物學檢測法 15 2-2-2-4 生物感測晶片法 16 2-3 生物薄膜(biofilm) 18 2-3-1 生物薄膜簡介 18 2-3-2 生物薄膜之生長過程 19 2-3-3 表面性質不同對生物薄膜形成之影響 20 2-4抗生物薄膜胜肽(anti-biofilm peptide) 23 2-4-1 抗生物薄膜胜肽簡介 23 2-4-2 (p)ppGpp訊號機制 23 2-5 自排性單分子膜(self-assembly monolayer, SAM) 24 2-5-1 SAM簡介 24 2-5-2 SAM與基板關係 25 2-5-2-1 硫醇基(SH)SAM於ITO 26 2-5-2-2 羧基(COOH)SAM於ITO 27 2-5-2-3 羧基-硫醇基雙端(COOH-SH)SAM於ITO 28 2-5-2-4 亞磷酸-羧基雙端(H2PO3-COOH)SAM於ITO 29 2-5-3 SAM長度與尾端官能基對基材表面性質之影響 30 2-5-4 亞磷酸SAM修飾ITO電極對PM晶片之影響 31 2-6 微流體技術 32 2-6-1 微流體技術簡介 32 2-6-2 微觀尺度下之流體特性 33 2-6-3 3D列印技術用以製作微流道 35 2-6-3-1 選擇性雷射熔融(Selective Laser Melting, SLM) 36 2-6-3-2 選擇性雷射燒結(Selective Laser Sintering, SLS) 36 2-6-3-3 光固化立體造型(Stereolithography, SLA) 37 2-6-3-4 數位光處理(Digital Light Processing, DLP) 38 2-6-3-5 熔融沉積成型(Fused Deposition Modeling, FDM) 39 2-6-3-6 聚合物噴射(PolyJet) 40 第三章 實驗 41 3-1 實驗目的與說明 41 3-2 實驗流程與步驟 43 3-2-1 以glycine填補降低抗體-PM或核酸適體-PM複合晶片的非特異性吸附實驗流程 43 3-2-2 以雙層PM晶片即時監測系統檢測S. mutans 生物薄膜於不同基材表面生長實驗流程 46 3-3 量測 48 3-3-1 Cuvette系統PM晶片D1、D2微分光電流訊號量測 48 3-3-2 雙層即時監測系統PM晶片D1、D2微分光電流訊號量測 49 3-3-3 倒立式螢光顯微鏡(Olympus IX73)操作 50 3-3-4 水滴接觸角量測 50 第四章 結果與討論 51 4-1 以glycine降低PM生物感測晶片非特異性吸附之探討 51 4-1-1 glycine填補對S. mutans抗體-PM複合晶片感測專一性之影響 51 4-1-2 glycine填補對S. mutans核酸適體-PM複合晶片感測專一性之影響 61 4-2 雙層PM晶片即時監測微流道設計與測試 72 4-3 雙層即時監測微流道系統中,PM層電解液(10 mM KCl, pH 8.5)之最適化流速 76 4-4 3DP光聚合膜抗S. mutans生物薄膜形成之比較 81 4-5 S. mutans生物薄膜生長於不同SAM修飾ITO玻璃表面比較 100 4-6 ITO-APPA基材上具不同抗生物薄膜胜肽對S. mutans生物薄膜生長之影響 115 第五章 結論 125 第六章 參考文獻 127

Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M.
Bio-microarray fabrication techniques—a review. Critical Reviews in Biotechnology.
2006, 26 (4):237-259.

Chen H-M, Jheng K-R, Yu A-D. Direct, label-free, selective, and sensitive microbial
detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors
and Bioelectronics. 2017, 91 (1):24-31.

Chen H-M, Lin C-J, Jheng K-R, Kosasih A, Chang J-Y. Effect of graphene oxide on
affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces
B: Biointerfaces. 2014, 116 (1):482-488.

Chen H-M, Lin M-L, Chen S-H. Fabrication of piezoelectric biochips with
self-assembled alkanethiol layer and hydrocoating. Journal of the Chinese Institute of
Chemical Engineers. 2003, 34 (1):151-160.

Clarke JK. On the bacterial factor in the aetiology of dental caries. British Journal of
Experimental Pathology. 1924, 5 (3):141.

Comina G, Suska A, Filippini D. Low cost lab-on-a-chip prototyping with a consumer
grade 3D printer. Lab on a Chip. 2014, 14 (16):2978-2982.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of
persistent infections. Science. 1999, 284 (5418):1318.

Daboor SM, Masood FSS, Al-Azab MS, Nori EE. A review on Streptococcus mutans
with its diseases dental caries, dental plaque and endocarditis. Indian Journal of
Microbiology Research. 2015, 2 (2):76-82.

de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm
development as a multicellular adaptation: antibiotic resistance and new therapeutic
strategies. Current Opinion in Microbiology. 2013, 16 (5):580-589.

de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW.
Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLOS
Pathogens. 2014, 10 (5):e1004152.

Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and
simulation Models. Nutrients. 2010, 2 (3):290-298.

Gold OG, Jordan H, Van Houte J. A selective medium for Streptococcus mutans.
Archives of Oral Biology. 1973, 18 (11):1357-1364.

Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus
mutans. Microbiological Reviews. 1980, 44 (2):331-384.

Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories.
Chemical Reviews. 2000, 100 (5):1755-1776.

Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional
insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews
Microbiology. 2015, 13 (5):298-309.

Hu Y, Zhang J, Ulstrup J. Investigation of Streptococcus mutans biofilm growth on
modified Au (111)-surfaces using AFM and electrochemistry. Journal of
Electroanalytical Chemistry. 2011, 656 (1):41-49.

Jakeway SC, de Mello AJ, Russell EL. Miniaturized total analysis systems for
biological analysis. Fresenius' Journal of Analytical Chemistry. 2000, 366
(6):525-539.

Kawamura I, Ohmine M, Tanabe J, Tuzi S, Saitô H, Naito A. Dynamic aspects of
extracellular loop region as a proton release pathway of bacteriorhodopsin studied
by relaxation time measurements by solid state NMR. Biochimica et Biophysica Acta
(BBA)-Biomembranes. 2007, 1768 (12):3090-3097.

Khorana H. Bacteriorhodopsin, a membrane protein that uses light to translocate
protons. Journal of Biological Chemistry. 1988, 263 (16):7439-7442.

Li Y-H, Tian X. Quorum sensing and bacterial social interactions in biofilms.
Sensors (Basel, Switzerland). 2012, 12 (3):2519-2538.

Lu HC, Chen HM, Lin YS, Lin JW. A reusable and specific protein A‐coated
piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress.
2000, 16 (1):116-124.

Manz A, Graber N, Widmer HM Miniaturized total chemical analysis systems: a
novel concept for chemical sensing. Sensors and Actuators B: Chemical. 1990, 1
(1-6):244-248.

McElwee J, Helmy R, Fadeev AY. Thermal stability of organic monolayers
chemically grafted to minerals. Journal of Colloid and Interface Science. 2005, 285
(2):551-556.

Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiology
Reviews. 2009, 33 (1):206-224.

Nakano K, Inaba H, Nomura R, Nemoto H, Takeda M, Yoshioka H, Matsue H,
Takahashi T, Taniguchi K, Amano A, Ooshima T. Detection of cariogenic
Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens.
Journal of Clinical Microbiology. 2006, 44 (9):3313-3317.

Novotný J, Foret F. Fluid manipulation on the micro‐scale: basics of fluid behavior in
microfluidics. Journal of Separation Science. 2016, 40 (1):383-394.

Oho T, Yamashita Y, Shimazaki Y, Kushiyama M, Koga T. Simple and rapid detection
of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase
chain reaction. Oral Microbiology and Immunology. 2000, 15 (4):258-262.

Pawsey S, Yach K, Reven L. Self-assembly of carboxyalkylphosphonic acids on metal
oxide powders. Langmuir. 2002, 18 (13):5205-5212.
Potrykus K, Cashel M. (p) ppGpp: still Magical? Annual Review of Microbiology.
2008, 62:35-51.

Rivas-Santiago B, Castañeda-Delgado JE, Santiago CER, Waldbrook M,
González-Curiel I, León–Contreras JC, Enciso-Moreno JA, del Villar V,
Mendez-Ramos J, Hancock RE. Ability of innate defence regulator peptides
IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis
infections in animal models. PLOS ONE. 2013, 8 (3):e59119.

Savory N, Takahashi Y, Tsukakoshi K, Hasegawa H, Takase M, Abe K, Yoshida W,
Ferri S, Kumazawa S, Sode K. Simultaneous improvement of specificity and affinity
of aptamers against Streptococcus mutans by in silico maturation for biosensor
development. Biotechnology and Bioengineering. 2014, 111 (3):454-461.

Shi W, Jewett A, Hume W. Rapid and quantitative detection of Streptococcus mutans
with species-specific monoclonal antibodies. Hybridoma. 1998, 17 (4):365-371.

Smorawinska M, Kuramitsu H. DNA probes for detection of cariogenic Streptococcus
mutans. Molecular Oral Microbiology. 1992, 7 (3):177-181.

Tandon V, Bhagavatula SK, Nelson WC, Kirby BJ. Zeta potential and electroosmotic
mobility in microfluidic devices fabricated from hydrophobic polymers: 1. the
origins of charge. Electrophoresis. 2008, 29 (5):1092-1101.

Ulman A. Formation and structure of self-assembled monolayers. Chemical reviews.
1996, 96 (4):1533-1554.

Wang H, Chen S, Li L, Jiang S. Improved method for the preparation of carboxylic
acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir.
2005, 21 (7):2633-2636.

Wang J-P, Yoo S-K, Song L, El-Sayed MA. Molecular mechanism of the differential
photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B.
1997, 101 (17):3420-3423.

Wang J. Vectorially oriented purple membrane: characterization by photocurrent
measurement and polarized-Fourier transform infrared spectroscopy.
Thin Solid Films. 2000, 379 (1):224-229.

Wang Z, de la Fuente-Núñez C, Shen Y, Haapasalo M, Hancock REW. Treatment of
oral multispecies biofilms by an anti-biofilm peptide. PLOS ONE. 2015, 10
(7):e0132512.

Yan C, Zharnikov M, Gölzhäuser A, Grunze M. Preparation and characterization of
self-assembled monolayers on indium tin oxide. Langmuir. 2000, 16 (15):6208-6215.

Zhang B, Kong T, Xu W, Su R, Gao Y, Cheng G. Surface functionalization of zinc
oxide by carboxyalkylphosphonic acid self-assembled monolayers. Langmuir. 2010,
26 (6):4514-4522.

江瑞璋、郭梅桂, 3D創客與產業應用, 印刷科技, 2015, 31:2, 22-50.

林其融, AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜, 國立台灣科技大學化學工程研究所碩士論文. 2013a
吳欣穎, 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析, 國立台灣科技大學化學工程研究所碩士論文. 2015

林承德, 氧化石墨烯濃度對以親和吸附作用製備細菌視紫質光電晶片之影響, 國立台灣科技大學化學工程研究所碩士論文. 2013b

林鼎勝, 3D列印的發展現況. 科學發展, 科技部, 台北市. 2014, 503, 32-37.

林聖為, 利用自排性單分子膜與生物親和吸附增進PM晶片的製程, 國立台灣科技大學化學工程研究所碩士論文. 2012

陳冠辰, 適體-細菌視紫質生物光電感測晶片之探討, 國立台灣科技大學化學工程研究所碩士論文. 2015

陳逸航, 定向性細菌視紫質晶片之光電與二倍頻響應探討, 國立台灣科技大學化學工程研究所碩士論文. 2010

許遠玲, 氧化石墨烯於紫膜晶片技術之應用, 國立台灣科技大學化學工程研究所碩士論文. 2012

蔡孟訓, 自排性單層分子膜於bacteriorhodopsin光電晶片製備之探討, 國立台灣科技大學化學工程研究所碩士論文. 2011

鄭俊義, 紫膜生物光電晶片於牙斑菌檢測之應用, 國立台灣科技大學化學工程研究所碩士論文. 2016

無法下載圖示 全文公開日期 2022/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE