簡易檢索 / 詳目顯示

研究生: 賴元偉
Yuan-wei Lai
論文名稱: 圓柱管噴流於垂直式水洞的實驗研究
Experimental study on a round tube jet in a vertical water tunnel
指導教授: 林怡均
Yi-Jiun Peter Lin
口試委員: 陳明志
Ming-Jyh Chern
朱佳仁
Chia-Ren Chu
張倉榮
Tsang-jung Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 171
中文關鍵詞: 流場可視化質點影像速度儀垂直式水洞圓柱管凸出圓管噴流
外文關鍵詞: flow visualization, Particle Image Velocimeter (P.I.V.), vertical water tunnel, cylindrical tube, round tube jet
相關次數: 點閱:359下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為了探討凸出於壁面某一距離的圓柱管射出之噴流受到橫流衝擊的近尾流結構,首先觀測橫流流過圓柱管和圓柱管噴流在不同水位高度靜止流體中的運動。垂直橫流由閉迴路直立式水洞提供,橫流雷諾數範圍為ReD = 250 ~ 1080,圓柱管噴流由馬達加壓經過浮子流量計後注入圓柱管射出產生,噴流雷諾數範圍為Rej = 260 ~ 2200,本研究利用流場可視化及質點影像速度儀(P.I.V.)觀測流場的結構。橫流流過圓柱管的實驗分成縱向和橫向垂直剖面,縱向垂直剖面Z/D = 0的流場, 隨ReD的增加,下洗分歧線的位置變化不大,但是圓柱管前端下游的下洗區域有些許的改變。橫向垂直剖面分為X/D = 0, -2.5, -5, -10。X/D = 0處,圓柱管周遭的流體在下游區域皆往圓柱管的中間位置偏移,流場並未出現渦漩。X/D = -2.5處,圓柱管下游區域的剪流層受到限制,尾流流道向圓柱管中間位置偏移。X/D = -5處,低ReD時有週期性的渦漩左右交替產生,高ReD時受到強烈下洗效應影響流場,週期性受到干擾,尾流流道往左或往右偏移。X/D = -10處,低與高ReD時皆有週期性的渦漩左右交替產生,尾流流道為蜿蜒的S形。圓柱管噴流在靜止流體中的運動,比較相同的Rej在兩個不同的水位高度。當Rej < 1330時,高水位的噴流擴散分離點較接近噴流圓柱管管口。當Rej = 1330時,低與高水位噴流擴散分離點的位置重合。當Rej > 1330時,低水位的噴流擴散分離點較接近噴流圓柱管管口。


The purpose of this research is to study the flow fields caused by a round tube jet in a crossflow within the near-wake region. The experiments of a crossflow passing around a cylindrical tube and a round tube jet under different static pressures are observed by using flow visualization and Particle Image Velocimeter (P.I.V.) techniques. Crossflow is produced by a vertical water tunnel, with ReD = 250 1080. The jet is supplied and controlled by pumping water through a rotameter into the cylindrical tube, with Rej = 260 ~ 2200. Experimental observations on crossflow passing around a cylindrical tube are divided into vertical longitudinal and cross sections. Vertical longitudinal section of the flow field is located at Z/D = 0. When ReD increases, the bifurcation line of downwash barely changes, but the region of the lee-side of cylindrical tube close to the tip has some variations. Vertical cross sections of the flow field are located at X/D = 0, -2.5, -5, -10, respectively. At X/D = 0, ambient fluid around the cylindrical tube tends to move toward the center region of the lee-side of cylindrical tube. There is no vortex observed. At X/D = -2.5, there is a stronger shear layer to confine the wake region. Wake tends to move toward the central region of the lee-side of the cylindrical tube. At X/D = -5, low ReD case shows vortices are created periodically and switch between left and right. For high ReD cases, periodical appearing vortices seem to be disturbed by stronger downwash crossflow. At X/D = -10, both high and low ReD cases show vortices appear periodically and interchange between left and right. Wakes move in S-shape pattern. For experiments of various Rej at two different water levels in stationary fluid. When Rej < 1330, jet breakdown position in the high water level is more close to the jet nozzle source, but when Rej > 1330, the comparison results are reversed. When Rej = 1330, jets in the low and the high water levels show a similar breakdown point position.

目錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 緒論 1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 流體流經圓柱. . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 噴流在靜止流體中的運動. . . . . . . . . . . . . . . . . . 5 1.2.3 橫流與噴流的交互作用. . . . . . . . . . . . . . . . . . . 8 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 實驗設備、儀器及方法 15 2.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 直立式水洞. . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 噴流供應系統. . . . . . . . . . . . . . . . . . . . . . . 15 2.2 實驗儀器及方法. . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 雷射光頁配置. . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 質點特性分析. . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 流場可視化. . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 質點影像速度儀. . . . . . . . . . . . . . . . . . . . . . 19 3 垂直橫流流過圓柱管 23 3.1 縱向垂直剖面分析. . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 流場可視化. . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 P.I.V.瞬時流場分析. . . . . . . . . . . . . . . . . . . . 24 3.1.3 時間平均速度流場分析. . . . . . . . . . . . . . . . . . . 25 3.2 橫向垂直剖面分析. . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 流場可視化. . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 P.I.V.瞬時流場分析. . . . . . . . . . . . . . . . . . . . 31 3.2.3 時間平均流場分析. . . . . . . . . . . . . . . . . . . . . 40 4 圓柱管噴流在靜止流體中的運動 43 4.1 瞬時流場型態. . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 低水位. . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2 高水位. . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 時間平均影像流場分析. . . . . . . . . . . . . . . . . . . . 46 4.2.1 低水位. . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 高水位. . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 擴散分離點與擴散角度. . . . . . . . . . . . . . . . . . . . 48 4.3.1 分離點. . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.2 角度. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 結論與建議 51 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 參考文獻 55

[1] 陳樺鋒, 利用質點影像測速儀探討受動量干擾後之圓柱尾流流場, 國立中山大學機械與機電工程學系, 碩士學位論文, 民國九十二年七月 (2003)。
[2] Earl H. Dowell(Editor), A Modern Course in Aeroelasticity, 4th edition, Kluwer Academic Publishers, ISBN-1-4020-2039-2 (2004).
[3] Lienhard, J. H., Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders, Published by the technical extension service, Washington State University, (1966).
[4] Nakamura, Y., Bluff body aerodynamics and turbulence, Journal of Wind Engineering and Industrial Aerodynamics, 49 (1993), 65-78.
[5] 陳信璁, 瞬間起動旋轉圓柱的拓樸流場演化質點軌跡視流法與PIV 的應用, 國立台灣科技大學機械系, 碩士學位論文, 民國九十三年五月 (2004)。
[6] Crow, S.C., & Champagne, F.H., Orderly structure in jet turbulence, Journal of Fluid Mechanics, 48 (1971), 547-591.
[7] 劉沛清, 自由紊動射流理論, 北京航空航天大學出版社, ISBN-978-7-81124-274-4 (2008).
[8] 朱佳仁, 環境流體力學, 科技圖書, ISBN-957-655-363-6 (2003).
[9] O’Neill, P., Soria, J. & Honnery, D., The stability of low Reynolds number round jets, Experiments in Fluids, 36 (2004), 473-483.
[10] Todde, V., Spazzini, P. G. & Sandberg, M., Experimental analysis of low-Reynolds number free jets, Experiments in Fluids, 47 (2009), 279-294.
[11] Kelso, R.M., Smits, A.J., Horseshoe Vortex System Resulting from the Interaction between a Laminar Boundary Layer and a Transverse Jet, Physics of Fluids, 7(1) (1995), 153-158.
[12] Strzelecki, A., Gajan, P., Gicquel, L. & Michel, B., Experimental investigation of the jets in crossflow Nonswirling flow case, AIAA Journal, 47(5) (2009), 1079-1089.
[13] Kelso, R. M., Lim, T. T. & Perry A. E., An experimental study of round jets in cross-flow, Journal of Fluid Mechanics, 306 (1996), 111-144.
[14] Lim, T. T., New, T. H. & Luo, S. C., On the development of large-scale structures of a jet normal to a cross flow, Physics of Fluids, 13(3) (2001), 770-775.
[15] Krothapalli, A., Lourenco, L. & Buchlin, J.M., Separated flow upstream of a jet in a crossflow, AIAA Journal, 28 No. 3 (1990), 414-420.
[16] Andreopoulos, J. & Rodi, W., Experimental Investigation of Jets in a Crossflow, Journal of Fluid Mechanics, 138 (1984), 93-127.
[17] New, T. H., Lim, T. T. & Luo S. C., Effects of jet velocity profiles on a round jet in cross-flow, Experiments in Fluids, 40 (2006), 859-875.
[18] New, T. H., Lim, T. T. & Luo S. C., A flow field study of an elliptic jet in cross flow using DPIV technique, Experiments in Fluids, 36 (2004), 604-618.
[19] New, T. H., Lim, T. T. & Luo S. C., Elliptic jets in cross-flow, Journal of Fluid Mechanics, 494 (2003), 119-140.
[20] Huang, R. F. & Hsieh R. H., An experimental study of elevated round jets deflected in a crosswind, Experimental thermal and Fluid Science, 27 (2002), 77-86.
[21] Huang, R. F. & Hsieh R. H., Sectional flow structures in near wake of elevated jets in a crossflow, AIAA Journal, 41(8) (2003), 1490-1499.
[22] Huang, R. F. & Lan J., Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet, Physics of Fluids, 17(3) (2005), 1-13.
[23] Huang, R. F. & Lan J., Vorticity evolution mechanism in near field of a transverse jet, JCIE, 29(4) (2006), 707-716.
[24] Watson, G. M. G. & Sigurdson L. W., The controlled relaminarization of low velocity ratio elevated jets-in-crossflow, Physics of Fluids, 20(9) (2008), art. no. 094108.
[25] 張智超, 設置垂直式水洞圓管噴流實驗, 國立台灣科技大學機械系, 碩士學位論文, 民國九十八年七月 (2009)。
[26] Jiji L. M., Heat Convection, Springer Verlag, ISBN-3-540-30692-7 (2006).
[27] Richard, C. F., & John, H. S., Fundamental of air pollution engineering, Prentice-Hall, ISBN-0-13-332537-7 (1988).
[28] Crow, C. T., Gore, R. & Troutt T.R., Particle dispersion by coherent structures in free shear flows, Part. Sci. Technol, 149(3) (1985).
[29] Dracos, T., Three Dimensional Velocity and VorticityMeasuring and Image Analysis Techniques, Springer Verlag, ISBN-0-7923-4256-9 (1996).

QR CODE