簡易檢索 / 詳目顯示

研究生: 尤嘉宏
Chia-Hung Yu
論文名稱: 進氣埠受氣流偏折閥調制之引擎缸內流場與引擎性能的相關性:PIV量測技術的開發與應用
Correlation between In-Cylinder Flow and Performance of Engines Modulated by an In-Deflection Valve
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
none
葉啟南
none
孫珍理
none
蘇裕軒
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 281
中文關鍵詞: 質點影像速度儀引擎氣流偏折閥
外文關鍵詞: tumble, inlet-deflection valve, swirl
相關次數: 點閱:236下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 引擎性能的優劣良窳取決於燃燒特性,而燃料與空氣之混合程度對燃燒特性影響更為深鉅。因此,探討缸內氣流的型態、結構與演化格外顯得特別重要。本研究使用質點影像速度儀(particle image velocimetry, PIV),分別針對一部四閥雙缸四行程引擎與一部四閥單缸四行程引擎,在進氣道內裝設氣流偏折閥(inlet-deflection valve)以調制缸內氣流的流場模態。於進氣和壓縮行程期間,進行缸內氣流運動的速度量測,診測缸內氣流繞著缸徑軸上的滾轉(tumble)運動和繞著汽缸軸上的旋轉(swirl)運動。為了解決循環變異所產生的變動性,使用樣本平均方法取得固定在某一曲軸角度下的流場平均速度,進而描繪出整體流場演化過程,並藉由循環渦度滾轉比、循環渦度旋轉比及循環絕對紊流強度等量化指標,定量分析氣流偏折閥在全開與全關下的流場結構與引擎性能間的相關性。實驗結果顯示,不論是將氣流偏折閥設置在進氣歧管內的引擎或是安置在進氣埠的引擎,當氣流偏折閥全關時,缸內均能有效形成旋轉運動,使量化後的循環渦度旋轉比明顯增強,並牽引紊流強度的提升。也由於旋轉運動的衍生,造就缸內燃料與空氣得以混合較均勻,改善引擎在怠速與低速下的燃燒,在引擎性能輸出方面與抑制廢氣生成量均有較佳表現,並於稀薄燃燒下呈現更佳效果。欲有效調制全域之引擎性能,可先調整滾轉比,使之大於0.4以上,再使用氣流偏折閥於低油門開度與中低轉速下,使缸內氣流旋轉比大於0.1。


    The evolution processes of the in-cylinder flows in the axial and diametral planes of a motored four-valve, single-cylinder, four-stroke engine during the intake and compression strokes are diagnosed by using a particle image velocimeter. A device, which is called the “inlet-deflection valve”, being capable of deflecting the inlet flow is installed to the inlet port. The engine cylinder, piston, and accessories are modified to meet the requirements of laser-light sheet shooting and camera viewing when the particle image velocimeter is applied. Conditional sampling technique is employed to acquire the instantaneous velocity data at predetermined crank angles. Ensemble average of large amount of the instantaneous velocity maps obtained at various crank angles present clear pictures of the evolution processes of the tumble and swirl motions in the engine cylinder. Sectional streamlines and the velocity vectors show the topological flow structures. The inception, establishment, evolution, and destruction processes of the swirling and tumbling vortical structures during the intake and compression strokes are presented and discussed. Quantified strengths of the rotating motions in the axial and diametral planes are presented by dimensionless tumble and swirl ratios, which is defined as the ratio of the mean angular velocity of the vortices in the target plane at a certain crank angle divided by average crank angle velocity. The quantitative results of the cycle-averaged swirl number show that the installation of the inlet-deflection valve can induce large swirl motion and turbulence intensity, particularly, in the intake stroke. By comparing the quantified non-dimensional parameters of the in-cylinder flow motions with the engine performance, the correlation between the flow and the engine output is closely linked. It is found that the engine performance at low throttle opening and low engine speed can be apparently raised if the cycle-averaged swirl ratio is higher than about 0.1. The limitation of applying the swirl-generating technique to the ranges of the high throttle opening and high engine speed is because that the means of generating the swirl motion in the cylinder would generally cause the volumetric efficiency to deteriorate when the inlet-deflection valve is functioning at large throttling and high engine speed. At mediate or high throttle opening and high engine speed, tumble ratio higher than approximately 0.4 is recommended.

    摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的 第二章 實驗構想、方法與設備儀器 2.1 實驗構想與方法 2.1.1 引擎改裝 2.1.2 引擎潤滑油路系統改裝 2.1.3 取像相位 2.1.4 座標定義 2.1.5 動力來源 2.1.6 質點選用 2.2 實驗設備 2.2.1 引擎型式與規格 2.2.2 氣流偏折閥 2.2.3 傳動系統 2.2.4 引擎測試平台 2.2.5 編碼器 2.2.6 質點植入系統 2.3 實驗儀器 2.3.1 質點影像速度儀 2.4 物理參數定義 2.4.1 樣本平均 2.4.2 紊流強度 2.4.3 面平均紊流強度 2.4.4 循環紊流強度 2.4.5 滾轉比 2.4.6 旋轉比 Part 1. 進氣歧管安裝氣流偏折閥之引擎 第三章 缸內氣流之滾轉運動 3.1 循環變異與樣本次數之分析 3.1.1 缸內流場結構與樣本平均次數之分析 3.1.2 缸內任一固定點的速度與樣本平均次數之分析 3.1.3 速度分量沿座標軸變化與樣本平均次數之分析 3.2 自然進氣之缸內氣流滾轉運動 3.2.1 流場結構與演化程 3.2.2 絕對紊流強度分佈與演化過程 3.2.3 相對紊流強度分佈與演化過程 3.3 進氣歧管安裝氣流偏折閥之缸內氣流滾轉運動 3.3.1 流場結構與演化程 3.3.2 絕對紊流強度分佈與演化過程 3.3.3 相對紊流強度分佈與演化過程 3.4 量化分析 3.4.1 循環平均滾轉比 3.4.2 循環平均紊流強度 3.5 比較 第四章 缸內氣流之旋轉運動 4.1 自然進氣之缸內氣流旋轉運動 4.1.1 流場結構與演化過程 4.1.1.1 取像截面Y=3.7 cm 4.1.1.2 取像截面Y=1.7 cm 4.1.2 絕對紊流強度分佈與演化過程 4.1.2.1 取像截面Y=3.7 cm 4.1.2.2 取像截面Y=1.7 cm 4.1.3 相對紊流強度分佈與演化過程 4.1.3.1 取像截面Y=3.7 cm 4.1.3.2 取像截面Y=1.7 cm 4.2 進氣歧管安裝氣流偏折閥之缸內氣流旋轉運動 4.2.1 流場結構與演化過程 4.2.1.1 取像截面Y=3.7 cm 4.2.1.2 取像截面Y=1.7 cm 4.2.2 絕對紊流強度分佈與演化過程 4.2.2.1 取像截面Y=3.7 cm 4.2.2.2 取像截面Y=1.7 cm 4.2.3 相對紊流強度分佈與演化過程 4.2.3.1 取像截面Y=3.7 cm 4.2.3.2 取像截面Y=1.7 cm 4.3 量化分析 4.3.1 循環平均滾轉比 4.3.2 循環平均紊流強度 4.4 比較 Part 2. 進氣埠安裝氣流偏折閥之引擎 第五章 缸內氣流之滾轉運動 5.1 自然進氣之缸內氣流滾轉運動 5.1.1 流場結構與演化程 5.1.2 絕對紊流強度分佈與演化過程 5.1.3 相對紊流強度分佈與演化過程 5.2 進氣埠安裝氣流偏折閥之缸內氣流滾轉運動 5.2.1 流場結構與演化程 5.2.2 絕對紊流強度分佈與演化過程 5.2.3 相對紊流強度分佈與演化過程 5.3 量化分析 5.3.1 循環平均滾轉比 5.3.2 循環平均紊流強度 5.4 比較 第六章 缸內氣流之旋轉運動 6.1 自然進氣之缸內氣流旋轉運動 6.1.1 流場結構與演化過程 6.1.1.1 取像截面Y=3.6 cm 6.1.1.2 取像截面Y=1.75 cm 6.1.2 絕對紊流強度分佈與演化過程 6.1.2.1 取像截面Y=3.6 cm 6.1.2.2 取像截面Y=1.75 cm 6.1.3 相對紊流強度分佈與演化過程 6.1.3.1 取像截面Y=3.6 cm 6.1.3.2 取像截面Y=1.75 cm 6.2 進氣歧管安裝氣流偏折閥之缸內氣流旋轉運動 6.2.1 流場結構與演化過程 6.2.1.1 取像截面Y=3.6 cm 6.2.1.2 取像截面Y=1.75 cm 6.2.2 絕對紊流強度分佈與演化過程 6.2.2.1 取像截面Y=3.6 cm 6.2.2.2 取像截面Y=1.75 cm 6.2.3 相對紊流強度分佈與演化過程 6.2.3.1 取像截面Y=3.6 cm 6.2.3.2 取像截面Y=1.75 cm 6.3 量化分析 6.3.1 循環平均滾轉比 6.3.2 循環平均紊流強度 6.4 比較 第七章 缸內氣流與引擎性能之相關性 7.1 空燃比 7.2 容積效率 7.3 扭矩 7.4 制動馬力 7.5 制動馬力燃料消耗量 7.6 排放物 7.7 稀薄燃燒下之引擎性能測試 第八章 討論 8.1 低油門開度 8.2 中油門開度 8.3 高油門開度 8.4 討論 第九章 結論與建議 9.1 結論 9.1.1 進氣歧管安裝氣流偏折閥之雙缸引擎 9.1.2 進氣埠安裝氣流偏折閥之單缸引擎 9.2 建議 參考文獻

    [1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
    [2] Heywood, J. B., Internal Combustion Engine, McGrsw-Hill, New York, 1988.
    [3] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, ASME Trans., Vol. 109, No. 1, March 1987, pp. 3-35.
    [4] Lancaster, D. R., “Effects of Variables on Turbulence in a Spark-Ignition Engine,” SAE Paper No. 760159, 1976.
    [5] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” SAE Paper No. 790095, 1979.
    [6] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” SAE Paper No. 790094, 1979.
    [7] Hirotomi, T., Nagayama, I. Kobayashi, S. Yamamasu, T., “Study of Induction Swirl in a Spark Ignition Engine,” SAE Paper No. 810496, 1981.
    [8] Arcoumanis, C., Bicen, A. F., Vlachos, N. S. and Whitelaw, J. H., “Effects of Flow and Geometry Boundary Conditions on Fluid Motion in a Motored IC Model Engine,” Proceedings of the Institution of Mechanical Engineers, Vol. 196, 1982, pp. 1-10.
    [9] Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, ASME Trans., Vol. 107, 1985, pp. 232-240.
    [10] Nadarajah, S., Balabani, S., Tindal, M. J. and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, 1998, pp. 473-484.
    [11] Khaligi, B. and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” SAE Paper No. 880519, 1988.
    [12] Arcoumanis, C., Hu, Z., Vafidis, C. and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark- Ignition Engines,” SAE Paper No. 900060, 1990.
    [13] Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” SAE Paper No. 900059, 1990.
    [14] Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
    [15] Ronnback, M., Le W. X. and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” SAE Paper No. 912376, 1991.
    [16] Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
    [17] Raffel, M., Willert, C. E. and Kompenhans, J., Particle Image Velocimetry, Springer-Verlag, Berlin Heidelberg, New York, 1998.
    [18] Lee, J. and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” SAE Paper No. 930480, 1993.
    [19] Valentino, G., Kaufman, D. and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” SAE Paper No. 932700, 1993.
    [20] Jackson, N. S., Stokes, J., Sadler, M., Heikal, M. R., Faure, M. and Pommier, L., “Correlation of the Combustion Characteristics of Spark Ignition Engines with the In-Cylinder Flow Field Characterised Using PIV in a Water Analogy Rig,” SAE Paper No. 971637, 1997.
    [21] Freek, C., Hentschel, W. and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
    [22] Rouland, E., Floch, A., Ahmed, A., Dionnet, D. and Trinite, M., “Characterization of Intake Generated Tumble Flow in 4-Valve Engine Using Cross-Correlation Particle Image Velocimetry,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 195.1-195.15.
    [23] Reeves, M., Towers, D. P., Tavender, B. and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, 1999, pp. 247-261.
    [24] Cao, Z. -M., Nishino, K., Mizuno, S. and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
    [25] Lee, K. H., Lee, C. H. and Lee, C. S., “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy and PIV Method,” Fuel, Vol. 83, 2004, pp. 971-980.
    [26] Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S. and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, 2005, pp. 105-127.
    [27] Arcoumanis, C., Godwin, S. N. and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” SAE Paper No. 981044, 1998.
    [28] Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T. and Ando, H., “Development of Gasoline Direct Injection Engine,” SAE Paper No. 970541, 1997.
    [29] Flagan, R. C. and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
    [30] Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, 1992, pp. 191-215.
    [31] Kane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measure Science and Technology, Vol. 1, 1990, pp. 1202-1215.
    [32] Keane, R. D., Adrain, R. J. and Zhang, Y., “Super-Resolution Particle Imaging Velocimetry,” Measurements of Science and Technology, Vol. 6, 1995, pp. 754-768.
    [33] Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, 1999, pp. 1-10.
    [34] 楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [35] 林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。

    QR CODE