簡易檢索 / 詳目顯示

研究生: 葉准軒
Chun-Hsuan Yeh
論文名稱: 以預測-修正型直接施力沉浸邊界法探討紊流中脈衝電漿致動器對翼型動態失速的影響
Prediction-correction direct-forcing immersed boundary modeling of dynamic stall with burst plasma actuator in turbulent flow
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 溫琮毅
Tsrong-Yi Wen
洪子倫
Tzyy-Leng Horng
王謹誠
Chin-Cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 動態失速預測-修正型直接施力沉浸邊界法流場控制電漿制動器
外文關鍵詞: Prediction-correction process, DBD plasma actuator
相關次數: 點閱:298下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 失速為一翼型在高攻角時因邊界層分離導致升力驟降的物理現象。動態失速則是在翼型攻角快速改變時機翼上緣的渦流延遲脫落,而造成延遲失速的現象。而在機翼表面增加介電質放電電漿技術是近年來較為廣泛研究的主動式流場控制,用以延緩失速現象的發生。
    研究將以計算流體力學分析模擬在雷諾數為2E+4下擺動的NACA0012翼型。在機翼前緣有無脈衝電漿致動器介入的情況下之升力和阻力的表現。直接施力沉浸邊界法以網格內的固體比例計算虛擬力,可在不需重建網格的情況下模擬複雜流體和固體間的交互作用。直接施力沉浸邊界法中加上預測-修正處理,並在統御方程式中引入紊流模型-大渦模擬法以求得本研究中的紊流現象。
    本研究證實預測-修正處理在直接施力沉浸邊界法可以在低雷諾數(20)的橫流過圓柱提供更精確的解,亦即可使用更大的時間步階和較少網格獲得相同解。並可以在雷諾數2E+4下驗證翼型擺動的升力和阻力表現。於翼型前緣施加穩態電漿致動器在提高翼型擺動週期上整體的升力有提升,並可以略為減少阻力。然而脈衝型電漿致動器則是可以在翼型擺動的下擺區段大幅減少阻力,進而獲得良好的升力/阻力比。


    Stall is an aerodynamic phenomenon of an airfoil, in which flow separates from the surfaceand lift drops occurs with high angle of attack (AOA). Dynamic stall is another unsteadyphenomenon while the airfoil changes AOA rapidly and the stall delays for a small period.Dielectric barrier discharge (DBD) actuator is a recently popular active flow control deviceapplied on airfoil to prevent from stall.
    In present study, computational fluid dynamic (CFD) is used for investigating the pitchingNACA0012 airfoil at the Reynolds number of 2×104with or without burst DBD actuatorat leading edge. Direct-forcing immersed boundary (DFIB) calculates the virtual force by thevolume-of-solid (VOS) function which allows the in-house program no need to re-generate meshfor complicated fluid-structure interaction (FSI) problems. Additional treatment, prediction-correction (P-C) process, is employed in the proposed DFIB method. Also, the turbulencemodel, large eddy simulation (LES), is applied into governing equations to solve the turbulentflow in the proposed numerical model.
    In the present results, the P-C process on DFIB method is validated to provide a more precise result on flow past circular cylinder. In other words, DFIB method with P-C process could get asimilar result with original DFIB method with less grids and larger time step. The present resultwith P-C DFIB method on oscillating NACA0012 airfoil also agrees with published research.Steady plasma actuator at leading edge provides a significant lift improvement in the pitchingcycle. However, an unsteady burst DBD actuator could obviously reduce drag in downstrokeperiod of pitching cycle. This leads to a better lift-to-drag ratio.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclature . . . . . . . . . . . . . . . . . . . . . . . vii List of tables . . . . . . . . . . . . . . . . . . . . . . xi List of figures . . . . . . . . . . . . . . . . . . . . . xi 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . 2 1.2.1 Direct-forcing immersed boundary method . . . . . . 2 1.2.2 Prediction-correction process on DFIB method . . . 3 1.2.3 Dynamic stall . . . . . . . . . . . . . . . . . . . 4 1.2.4 Dielectric barrier discharge actuator .. . . . . . . 5 1.2.5 Unsteady burst DBD actuator . . . . . . . . . . . . 5 1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . 7 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL . . . . . . . 8 2.1 Governing equations . . . . . . . . . . . . . . . . . 8 2.2 Numerical methods . . . . . . . . . . . . . . . . . . 10 2.2.1 Projection method . . . . . . . . . . . . . . . . . 10 2.2.2 Direct-forcing immersed boundary method . . . . . . 12 2.2.3 Prediction-correction DFIB method . . . . .. . . . . 12 2.3 Airfoil and pitching model . . . . . .. . . . . . . . 14 2.4 Dielectric barrier discharge actuator . . . . . . . . 15 2.5 Pressure distribution on solid surface . . . . . . . . 17 2.6 Hybrid parallel programming . . . . . . . . . . . . . 18 2.7 Computational environment . . . . . . . . . . . . . . 18 3 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . 20 3.1 Validation . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Prediction-correction process in DFIB method . . . 20 3.1.2 Cp evaluation in DFIB method . . . . . . . . . . . . 25 3.1.3 Dielectric barrier discharge actuator . . . . . . . 28 3.2 Dynamic stall with and without burst DBD actuator . . 31 3.2.1 Grid independence . . . . . . . . . . . . . . .. . . 33 3.2.2 Dynamic stall without flow control . . . . . . . . . 35 3.2.3 Dynamic stall with burst DBD actuator . . . . . . . 37 4 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . . . 48 4.1 Conclusions . . .. . . . . . . . . . . . . . . . . . . 48 4.2 Future works . . . . . . . . . . . . . .. . . . . . . 50

    [1] C. S. Peskin. Flow patterns around heart valves: A numerical method.Journal ofComputational Physics, 10:252–271, 1972.
    [2] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundaryfinite-difference method for three dimensional complex flow simulations.Journal ofComputational Physics, 161:35–60, 2000.
    [3] D. Z. Noor, M. J. Chern, and T. L. Horng. An immersed boundary method to solvefluid–solid interaction problems.Computational Mechanics, 44:447–453, 2009.
    [4] M. J. Chern, W. C. Shiu, and T. L. Horng. Immersed boundary modeling for interac-tion of oscillatory flow with cylinder array under effects of flow direction and cylinderarrangement.Journal of Fluids and Structures, 43:325–346, 2013.
    [5] M. J. Chern, Y. H. Kuan, G. Nugroho, G. T. Lu, and T. L. Horng. Direct-forcing immersedboundary modeling of vortex-induced vibration of a circular cylinder.Journal of WindEngineering and Industrial Aerodynamics, 134:109–121, 2014.
    [6] M. J. Chern, D. Z. Noor, C. B. Liao, and T. L. Horng. Direct-forcing immersed boundarymethod for mixed heat transfer.Communications in Computational Physics, 18:1072–1094,2015.
    [7] T. L. Horng, P. W. Hsieh, S. Y. Yang, and C. S. You. A simple direct-forcing immersedboundary projection method with prediction-correction for fluid-solid interaction prob-lems.Computers & Fluids, 176:135–152, 2018.
    [8] C. S. You.On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems.PhD thesis, Department of Mathematics, National CentralUniversity, Taiwan, 2016.
    [9] H. Choi and P. Moin. Effects of the computational time step on numerical solutions ofturbulent flow.Journal of Computational Physics, 113:1–4, 1994.
    [10] L. W. Carr. Progress in analysis and prediction of dynamic stall.Journal of Aircraft,25:6–17, 1988.[11] W. J. McCroskey.The Phenomenon of Dynamic Stall.Technical Report ADA098191,Defense Technical Information Center Document, USA, 1981.
    [12] T. C. Corke and F. O. Thomas. Dynamic stall in pitching airfoils: Aerodynamic dampingand compressibility effects.Annual Review of Fluid Mechanics, 47:479–505, 2015.
    [13] M. L. Post.Plasma Actuators for Separation Control on Stationary and Oscillating Airfoils.PhD thesis, Department of Aerospace and Mechanical Engineering, University of NotreDame, USA, 2004.[14] A. Spentzos, G. Barakos, K. Badcock, B. Richards, P. Wernert, S. Schreck, and M. Raffel.Investigation of three-dimensional dynamic stall using computational fluid dynamics.AIAAJournal, 43:1023–1033, 2005.
    [15] N. Guillaud, G. Balarac, and E. Goncalvès. Large eddy simulations on a pitching airfoil:Analysis of the reduced frequency influence.Computers & Fluids, 161:1–13, 2018.
    [16] S. Wang, D. B. Ingham, L. Mab, M. Pourkashanian, and Z. Tao. Numerical investigationson dynamic stall of low Reynolds number flow around oscillating airfoils.Computers &Fluids, 39:1529–1541, 2010.
    [17] Y. S. Baik, L. P. Bernal, K. Granlund, and M. V. Ol. Unsteady force generation and vortexdynamics of pitching and plunging aerofoils.Journal of Fluid Mechanics, 709:37–68,2012.
    [18] H. R. Karbasian, J. A. Esfahani, and E. Barati. Effect of acceleration on dynamic stall ofairfoil in unsteady operating conditions.Wind Energy, 19:17–33, 2016.
    [19] W. Shyy, B. Jayaraman, and A. Andersson. Modeling of glow discharge-induced fluiddynamics.Journal of Applied Physics, 92:6434–6443, 2002.[20] M. L. Post and T. C. Corke. Separation control on high angle of attack airfoil using plasmaactuators.AIAA Journal, 42:2177–2184, 2004.
    [21] X. Meng, H. Hu, X. Yan, F. Liu, and S. Luo. Lift improvements using duty-cycled plasmaactuation at low Reynolds numbers.Aerospace Science and Technology, 72:123–133,2018.
    [22] H. Akbıyık, H. Yavuz, and Y. E. Akansu. Aerodynamic and energy-efficiency-basedassessment of plasma actuator’s position on a NACA0015 airfoil.Contributions to PlasmaPhysics, 60:e201900009, 2019.
    [23] C. He, T. C. Corke, and M. P. Patel. Plasma flaps and slats: An application of weaklyionized plasma actuators.Journal of Aircraft, 46:864–873, 2009.
    [24] M. Sato, T. Nonomura, K. Okada, K. Asada, H. Aono, A. Yakeno, Y. Abe, and K. Fujii.Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasmaactuator at low Reynolds number.Physics of Fluids, 27:117101, 2015.
    [25] M. Sato, H. Aono, A. Yakeno, T. Nonomura, K. Fujii, K. Okada, and K. Asada. Multi-factorial effects of operating conditions of dielectric-barrier-discharge plasma actuator onlaminar-separated-flow control.AIAA Journal, 53:2544–2559, 2015.
    [26] M. L. Post and T. C. Corke. Separation control using plasma actuators: Dynamic stallvortex control on oscillating airfoil.AIAA Journal, 44:3124–3134, 2006.
    [27] K. Asada, Y. Ninomiya, K. Fujii, and A. Oyama. Airfoil flow experiment on the duty cycleof DBD plasma actuator. In47th AIAA Aerospace Sciences Meeting including The NewHorizons Forum and Aerospace Exposition, USA, 2009.
    [28] D. K. Lilly. The representation of small-scale turbulence in numerical simulation exper-iments. InProceedings of the IBM Scientific Computing Symposium on EnvironmentalSciences, 1966.
    [29] S. M. Salim and S. C. Cheah. Wall푦+strategy for dealing with wall-bounded turbulentflows. InProceedings of the International MultiConference on Engineerings and ComputerScience, Hong Kong, 2009.
    [30] A. J. Chorin. A numerical method for solving incompressible viscous flow problems.Journal of Computational Physics, 2:12–26, 1967.
    [31] S. A. Raza, Y. H. Irawan, and M. J. Chern. Effect of boundary conditions and domainsize on the turbulent flow characteristics over a circular cylinder.Journal of the ChineseInstitute of Engineers, 0(0):1–14, 2021.
    [32] S. C. R. Dennis and G. Z. Chang. Numerical solutions for steady flow past a circularcylinder at Reynolds numbers up to 100.Journal of Fluid Mechanics, 42:471–489, 1970.
    [33] J. Park, K. Kwon, and H. Choi. Numerical solutions of flow past a circular cylinder atReynolds numbers up to 160.Journal of Mechanical Science and Technology, 12:1200–1205, 1998.
    [34] S. Sen, S. Mittal, and G. Biswas. Steady separated flow past a circular cylinder at lowReynolds numbers.Journal of Fluid Mechanics, 620:89–119, 2009.
    [35] C. Yan, W. X. Huang, G. X. Cui, C. Xu, and Z. S. Zhang. A ghost-cell immersed boundarymethod for large eddy simulation of flows in complex geometries.International Journalof Computational Fluid Dynamics, 29:12–25, 2015.

    QR CODE