研究生: |
陳寧賢 Ning-Xian Chen |
---|---|
論文名稱: |
鋰電池模組內外平衡之設計與實現 Design and Implementation of Cell and Module Balancing for Lithium Modules |
指導教授: |
林長華
Chang-Hua Lin |
口試委員: |
劉添華
Tian-Hua Liu 白凱仁 Kai-Jun Pai 王見銘 Chien-Ming Wang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 主動式平衡 、電池管理系統 、主動箝位返馳式轉換器 |
外文關鍵詞: | Active Balancing, Battery Management System, Active-clamp Flyback converter |
相關次數: | 點閱:851 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研製一組兼具電池芯及模組平衡之電池管理系統。所提之系統以電池管理系統及電池模組平衡電路所構成,應用於高串數電池系統,可方便進行模組化疊層,其中電池管理系統,可有效地將模組內電池芯進行監測、平衡及保護,並採用一個雙向返馳式轉換器作為電芯平衡電路,結合光繼電器陣列以達到主動式電量平衡之效果。其次,加入電池模組平衡系統,透過一個主動箝位返馳式轉換器作為模組平衡電路,再搭配MOSFET開關矩陣,以解決模組疊層後,電池模組間之不平衡問題,使得系統電路具雙層保護之效果。此外,利用數位控制器結合Modbus界面及RS485通訊協定作為電路間之通訊功能,並透過人機介面可方便取得電池模組之資訊。最後,實際透過人機介面擷取各模組之電池資訊,並運用所提系統進行實測,以驗證此系統之效能及可行性。
This thesis proposes a battery management system with cell balancing and module balancing function. The proposed system, which consists of a battery management system and a battery module balancing circuit, is applied to a high-cell-count battery system for easy modular stacking. The implemented battery management system has functions of detecting, cell balancing, and protecting the battery module. To realize the active cell balancing function, a bidirectional flyback converter with photorelay array is employed as the balancing circuit. In addition, the proposed system overcomes the imbalance problem between the battery modules by an Active-clamp Flyback converter with the MOSFET array to ensure the battery pack with dual protection. Furthermore, the Modbus interface and RS485 communication protocol are integrated by the digital controller to achieve the communication function among the whole system. All the information of the battery pack can be also easily obtained through the user interface. Finally, the proposed system is used to verify its performances and feasibility.
[1] T. Morstyn, M. Momayyezan, B. Hredzak and V. G. Agelidis, "Distributed Control for State-of-Charge Balancing Between the Modules of a Reconfigurable Battery Energy Storage System," IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7986-7995, Nov. 2016. doi: 10.1109/TPEL.2015.2513777
[2] https://www.inside.com.tw/article/18484-taipei-auto-show-electric-vehicle
[3] S. Ci, N. Lin and D. Wu, "Reconfigurable Battery Techniques and Systems: A Survey," IEEE Access, vol. 4, pp. 1175-1189, 2016. doi: 10.1109/ACCESS.2016.2545338
[4] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof and P. J. Ker, "State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations," IEEE Access, vol. 6, pp. 19362-19378, 2018.
[5] H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Chow, "Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles," IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 4-16, June 2013.
[6] R. Xiong, F. Sun, X. Gong and H. He, " Cell State-of-Charge Estimation for the Multi-cell Series-connected Battery Pack with Model bIas Correction Approach," Journal of Power Sources, vol. 242, pp. 699-713, May 2013.
[7] A. T. Elsayed, C. R. Lashway and O. A. Mohammed, "Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure," IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 897-905, Mar. 2016.
[8] Q. Yu, R. Xiong, C. Lin, W. Shen, and J. Deng, "Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8693-8701, Oct. 2017.
[9] G. Wu, R. Lu, C. Zhu, and C. C. Chan, “State of charge estimation for NiMH Battery based on electromotive force method,” in Proc. IEEE Veh. Power Propulsion Conf., Harbin, China, 2008, pp. 1–5.
[10] B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, "Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles," IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 783-794, May 2005.
[11] 陳冠中,“具電量回收之可攜式在線電池診斷平台”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零八年七月。
[12] D. Andre, C. Appel, T. Soczka-Guth, and D. Sauer, “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” Journal of Power Sources, vol. 224, pp. 20-27, Oct. 2012.
[13] Y. Hsieh, and C. Huang, "Li-ion battery charger based on digitally controlled phase-shifted full-bridge converter," IET Power Electronics, vol. 4, no. 2, pp. 242-247, Feb. 2011.
[14] M. Einhorn, W. Roessler, and J. Fleig, "Improved Performance of Serially Connected Li-Ion Batteries With Active Cell Balancing in Electric Vehicles," IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2448-2457, July 2011.
[15] M. A. Hannan, M. M. Hoque, S. E. Peng, and M. N. Uddin, "Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle Applications," IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2541-2549, May-June 2017.
[16] K. Lee, Y. Chung, C. Sung, and B. Kang, "Active Cell Balancing of Li-Ion Batteries Using LC Series Resonant Circuit," IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5491-5501, Sep. 2015.
[17] Y. Lee, and G. Cheng, "Quasi-Resonant Zero-Current-Switching Bidirectional Converter for Battery Equalization Applications," IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1213-1224, Sep. 2006.
[18] W. Huang, and J. A. Abu Qahouq, "Energy Sharing Control Scheme for State-of-Charge Balancing of Distributed Battery Energy Storage System," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2764-2776, May 2015.
[19] H. Kim, and K. G. Shin, "DESA: Dependable, Efficient, Scalable Architecture for Management of Large-Scale Batteries," IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 406-417, May 2012.
[20] C. Kallfaß, C. Hoch, A. Hilger, and I. Manke, "Short-circuit and overcharge behaviour of some lithium ion batteries," International Multi-Conference on Systems, Signals & Devices, Chemnitz, 2012, pp. 1-5.
[21] F. Altaf, B. Egardt, and L. Johannesson Mårdh, "Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing," IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 47-62, Jan. 2017.
[22] X. Hu, W. Liu, X. Lin, and Y. Xie, "A Comparative Study of Control-Oriented Thermal Models for Cylindrical Li-Ion Batteries," IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 1237-1253, Dec. 2019.
[23] S. N. Motapon, A. Lupien-Bedard, L. Dessaint, H. Fortin-Blanchette, and K. Al-Haddad, "A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 998-1008, Feb. 2017.
[24] 李宥霖,“具雙向返馳轉換器之主動式電池平衡系統控制策略”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零八年七月。
[25] 林建宇,“隔離型混合切換返馳式轉換器之分析與設計”,國立臺灣科技大學電機工程系博士學位論文,民國一百零三年六月。
[26] 張瓊仁,”鎳氫電池容量管理之研究”,國立中山大學電機工程系碩士論文,西元2005年七月
[27] Battery University, BU-216 [Online]. Available:https://is.gd/qxgGlv
[28] Sanyo/Panasonic, UR18650NSX Datasheet [Online].Available:
https://www.orbtronic.com/content/panasonic-sanyo-datasheet-specsur18650nsx.pdf
[29] Q. Xu, J. Xiao, P. Wang, X. Pan, and C. Wen, "A Decentralized Control Strategy for Autonomous Transient Power Sharing and State-of-Charge Recovery in Hybrid Energy Storage Systems," IEEE Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1443-1452, Oct. 2017.
[30] Sanyo/Panasonic,Test of Sanyo UR18650NSX [Online].Available:
https://is.gd/LJTqur
[31] 新鋰念科技, 新型18650磷酸鐵鋰動力電池的市場應用分析 [Online] .Available: http://www.hnxlnkj.com/NewsDetail.aspx?ID=289
[32] C. Weng, J. Sun, and H. Peng “A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring,” Journal of Power Sources, vol. 258, pp.228-237, Jul, 2014.
[33] C. Wu, C. Zhu, and Y. Ge, "A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery," IEEE Transactions on Plasma Science, vol. 45, no. 7, pp. 1533-1538, July 2017, doi: 10.1109/TPS.2017.2706088.
[34] J. Lin, "Development of a two-staged balancing scheme for charging lithium iron cells in series," IET Electrical Systems in Transportation, vol. 6, no. 3, pp. 145-152, 2016, doi: 10.1049/iet-est.2014.0047.
[35] Z. B. Omariba, L. Zhang, and D. Sun, "Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles," IEEE Access, vol. 7, pp. 129335-129352, 2019. doi:10.1109/ACCESS.2019.2940090
[36] 大規模鋰離子電池管理系統,李建林譯,機械工業出版社,2016/10
[37] Xiong, Rui. Advanced Battery Management Technologies for Electric Vehicles.. [VitalSource Bookshelf].
[38] S. Narayanaswamy, M. Kauer, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty, "Modular Active Charge Balancing for Scalable Battery Packs," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 974-987, Mar. 2017, doi: 10.1109/TVLSI.2016.2611526.
[39] T. Morstyn, M. Momayyezan, B. Hredzak, and V. G. Agelidis, "Distributed Control for State-of-Charge Balancing Between the Modules of a Reconfigurable Battery Energy Storage System," IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7986-7995, Nov. 2016, doi: 10.1109/TPEL.2015.2513777.
[40] M. Momayyezan, B. Hredzak, and V. G. Agelidis, "Integrated Reconfigurable Converter Topology for High-Voltage Battery Systems," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1968-1979, Mar. 2016, doi: 10.1109/TPEL.2015.2440441.
[41] S. Narayanaswamy, M. Kauer, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty, "Modular Active Charge Balancing for Scalable Battery Packs," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 974-987, Mar. 2017, doi: 10.1109/TVLSI.2016.2611526.
[42] M. Lukasiewycz, S. Steinhorst, and S. Narayanaswamy, “Verification of balancing architectures for modular batteries,” in Proc. IEEE CODES+ISSS, Oct. 2014, pp. 30:1–30:10.
[43] M. Kauer, S. Naranayaswami, S. Steinhorst, M. Lukasiewycz, S. Chakraborty, and L. Hedrich, “Modular system-level architecture for concurrent cell balancing,” in Proc. IEEE DAC, May 2013, pp. 1–10.
[44] Texas Instruments, OPA2227, “HIGH PRECISION, LOW NOISE OPERATIONAL AMPLIFIER,” 2012.
[45] Allegro Micro Systems, ACS712ELCTR-05B-T, “Fully Integrated, Hall Effect-Based Linear Current Sensor,” 2006-2007.
[46] BesTeks Technology, NCTM0250, “Open Loop Current Sensor,” 2017.
[47] 簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
[48] Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
[49] Microchip, dsPIC33FJ64GS606 datasheet,“16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators”, 2009-2012.
[50] Microchip, “MPLAB XC16 C Compiler User's Guide,” 2012-2016.
[51] http://www.yuyou.com.tw/article.asp?sn=129