簡易檢索 / 詳目顯示

研究生: 黃思瑤
Szu-Yao Huang
論文名稱: 不同軟段多元醇組成熱塑性聚氨酯之泡材熱性質探討
Thermal properties of thermoplastic polyurethanes foam composed with different soft segments
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 蘇至善
Chie-Shaan Su
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 熱塑性聚氨酯多元醇二氧化碳批次發泡熱處理DSC
外文關鍵詞: Thermoplastic polyurethane, Polyol, carbon dioxide, batch foaming, annealing, DSC
相關次數: 點閱:373下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱塑性聚氨酯(TPU)是由軟鏈段和硬鏈段組成線性嵌段共聚物,而軟、硬鏈段之間的熱力學不相容性造成其微相分離的結構。這種微觀結構賦予TPU各種性能,並可應用於許多領域。而近年來TPU的市場上出現ETPU (expanded TPU)的泡珠材料(bead foam),具有輕量化、耐磨、彈性好以及環保等優點。泡珠材料的最大優勢為可製備高膨脹倍率的複雜形狀發泡材料,泡珠成型需透過高溫蒸氣進行黏合,在DSC上有雙熔峰是結晶性或彈性體高分子材料能否黏合的重要特徵。本實驗自行合成三種不同軟鏈段的TPU製備低密度泡材。
    本實驗分為三大部分,第一部分為二步法自行合成TPU,分別以PTMEG、PPG、PBA三種不同的多元醇作為軟段,硬段則是MDI與BD組成。
    第二部分為將三種TPU進行不同含浸溫度與含浸時間的熱處理,由於本實驗採用一步法批次發泡製備發泡材料,需要先將材料在高溫下含浸一段時間才進行洩壓發泡。已知熱加工對TPU結構影響很大,因此我們先將樣品進行同樣的熱處理過程再以DSC分析,結果發現三種TPU隨含浸溫度改變的趨勢幾乎一致。
    第三部分為以二氧化碳對TPU進行一步法批次發泡,探討不同含浸溫度和含浸時間與泡孔型態的關係,本實驗使用80、100、120、140°C四種含浸溫度,以及1 hr與24 hr的含浸時間。實驗結果發現相同軟段在兩種含浸時間得到的泡材泡孔型態相似。含浸溫度方面,PPG在100°C得到最高膨脹倍率,PTMEG與PBA則是在120°C得到最高膨脹倍率。將泡材進行DSC分析後,均可看到兩個明顯的吸熱峰,此結果符合泡珠黏合的條件。


    Thermoplastic polyurethanes (TPU) are linear segment block coploymers composed of soft and hard segments, the thermodynamic incompatibility between the soft and hard segments causes microphase separation. Such a microstructure provides TPU various properties. In recent years, expanded TPU (ETPU) bead foam appeared on the market, which has the advantages of lightweight, wear resistance, high elasticity and recyclable. The most important advantage of bead foam material is that it can prepare 3D foaming material with high expansion ratio. The foam beads are sintered using high temperature steam. The double melting peaks is the important feature for elastomeric or crystalline polymers to be sintered. In this experiment, three different soft segments of TPUs were synthesized to prepare low-density foam materials.
    TPU was synthesized by the two-step method using PTMEG, PPG and PBA three different polyols as soft segments. MDI and BD were applied as hard segments.
    The synthesized TPUs were foamed by the one-step batch foaming using CO2 as the blowing agent. TPU was saturated at high temperature for a certain period of time before foaming. It is known that thermal processing has a great influence on the TPU structure. Therefore, series heat treatments were performed on the solid and foamed TPU and then analyzed by DSC. The results showed that the three TPUs has almost the same trend with saturation temperature.
    The relationship between different saturation temperature and saturation time and cell morphology is discussed. After foaming, two distinct endothermic peaks were observed on DSC graph, which is suitable for bead foam sintering.

    摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章、緒論 1 第二章、文獻回顧 3 2.1 熱塑性聚氨酯簡介 3 2.1.1 TPU合成 5 2.1.2 TPU原料 7 2.1.2.1 二異氰酸酯 7 2.1.2.2 多元醇 8 2.1.2.3 擴鏈劑 9 2.1.2.4 催化劑 9 2.2 TPU性質探討 10 2.2.1 結構影響 10 2.2.2 熱行為探討-熱示差掃描分析(DSC) 12 2.3 高分子發泡材料 14 2.3.1發泡劑 15 2.3.2發泡機制 17 2.3.2.1泡孔成核(cell nucleation) 18 2.3.2.2 泡體成長(cell growth) 20 2.3.2.3 泡體穩定(cell stabilization) 20 2.2.4批次發泡 21 2.2.5泡珠 22 第三章 實驗方法 25 3.1 實驗藥品 25 3.2 實驗儀器 30 3.3 實驗步驟 33 3.3.1 實驗流程圖 33 3.3.2 熱塑性聚氨酯製備 34 3.3.2.1熱塑性聚氨酯合成 34 3.3.2.2滴定實驗 35 3.3.3 混煉加工 36 3.3.4 一步法批次發泡 36 3.3.5 持溫含浸實驗 37 3.4測量方法 38 3.4.1 超效能高分子層析系統(APC) 38 3.4.2 熱示差掃描量熱儀(DSC) 38 3.4.3 掃描式電子顯微鏡(SEM) 38 3.4.4 泡孔孔徑(cell size)計算 38 3.4.5 泡材密度(foam density)量測 39 3.4.6 泡孔密度(cell density)計算 39 3.4.7 卡式水分儀(Karl Fischer Titrator) 40 3.4.8 熱重分析儀(TGA) 40 第四章、結果與討論 41 4.1自行合成之熱塑性聚氨酯材料分析 41 4.1.1預聚物滴定分析 41 4.1.2分子量量測 42 4.1.3密度量測 42 4.1.3熱塑性聚氨酯之熱分析 43 4.1.3.1 DSC 43 4.1.3.2 TGA量測 45 4.2不同含浸溫度與時間對熱塑性聚氨酯材料影響 46 4.2.1不同含浸溫度對硬段排序之影響 46 4.2.2不同含浸時間對硬段排序之影響 51 4.3熱塑性聚氨酯一步法批次發泡之發泡材料分析 55 4.3.1發泡溫度對泡孔型態之影響 55 4.3.2含浸時間對泡孔型態之影響 61 4.3.3不同發泡條件之發泡材料熱分析 70 第五章、結論 76 參考文獻 77 附錄A 多元醇類水分測定 86 附錄B 烘箱除水前後DSC圖 87 附錄C 泡材除水前後的DSC圖 88 附錄D 不同含浸時間之膨脹倍率收縮變化 90 附錄E 添加1 wt%滑石粉的影響 92 附錄F TPU泡材之XRD圖 93 附錄G TPU緩洩之DSC圖 94

    1. Thermoplastic Polyurethane Market worth 2.48 Billion USD by 2021. Available from: https://www.marketsandmarkets.com/PressReleases/thermoplastic-polyurethanes.asp.
    2. J. J. Song, H. H. Chang and H. E. Naguib, Design and characterization of biocompatible shape memory polymer (SMP) blend foams with a dynamic porous structure. Polymer, 2015. 56: p. 82-92.
    3. A. Prasad, G. Fotou and S. Li, The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads. Journal of Materials Research, 2013. 28: p. 2380-2393.
    4. W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan, J. Gao, G. Zheng, C. Liu and C. Shen, Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Applied Materials and Interfaces, 2017. 9: p. 42266-42277.
    5. L. Sorrentino, M. Aurilia and S. Iannace, Polymeric foams from high-performance thermoplastics. Advances in Polymer Technology, 2011. 30: p. 234-243.
    6. Polyurethanes now material of choice for sports shoes. 2014; Available from: https://www.icis.com/resources/news/2014/09/19/9822302/acc-polyurethanes-now-material-of-choice-for-sports-shoes/.
    7. Basf. Infinergy®The first expanded TPU -Small beads, high performance. Available from: https://www.plasticsportal.net/wa/plasticsEU/portal/show/common/content/campaigns/infinergy/english/index.html
    8. A. Saiani, A. Novak, L. Rodier, G. Eeckhaut, J. W. Leenslag and J. S. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane:  effect of annealing temperature. Macromolecules, 2007. 40: p. 7252-7262.
    9. J. T. Koberstein and A. F. Galambos, Multiple melting in segmented polyurethane block copolymers. Macromolecules, 1992. 25: p. 5618-5624.
    10. W. Hu and J. T. Koberstein, The effect of thermal annealing on the thermal properties and molecular weight of a segmented polyurethane copolymer. Journal of Polymer Science Part B: Polymer Physics, 1994. 32: p. 437-446.
    11. L. Wang. Polyurethane Foam-From furniture cushions to insulation, versatile polymer has found a world of applications. Chemical & Engineering News, 2006. 84: p.48
    12. D. Jane. Shifting production in CASE market highlighted at conference. Urethanes Technology International, 2014; Available from: https://utech-polyurethane.com/information/shifting-production-in-case-market-highlighted-at-conferencecase/
    13. Y. He, D. Xie and X. Zhang, The structure, microphase-sepa rated morphology, and property of polyurethanes and polyureas. Journal of Materials Science, 2014. 49: p. 7339-7352.
    14. B. Finnigan, D. Martin, P. Halley, R. Truss and K. Campbell, Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer, 2004. 45: p. 2249-2260.
    15. M. Aurilia, F. Piscitelli, L. Sorrentino, M. Lavorgna and S. Iannace, Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal, 2011. 47: p. 925-936.
    16. B. Fernández D'arlas, L. Rueda, K. De La Caba, I. Mondragon and A. Eceiza, Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polymer Engineering and Science, 2008. 48: p. 519-529.
    17. R. J. Gaymans, Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Progress in Polymer Science, 2011. 36: p. 713-748.
    18. P. Król, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007. 52: p. 915-1015.
    19. A. K. Bhowmick and H. Stephens, Handbook of Elastomers, Second Edition. CRC Press, 2000. Boca Raton, FL Academic Press.
    20. K. Kojio, M. Furukawa, Y. Nonaka and S. Nakamura, Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials, 2010. 3: p. 5097-5110.
    21. H. Tanaka and M. Kunimura, Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polymer Engineering and Science, 2004. 42: p. 1333-1349.
    22. S. L. Cooper and A. V. Tobolsky, Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science, 1966. 10: p. 1837-1844.
    23. H. D. Kim, T. J. Lee, J. H. Huh and D. J. Lee, Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. Journal of Applied Polymer Science, 1999. 73: p. 345-352.
    24. K. Bagdi, K. Molnár, M. Kállay, P. Schön, J. G. Vancsó and B. Pukánszky, Quantitative estimation of the strength of specific interactions in polyurethane elastomers, and their effect on structure and properties. European Polymer Journal, 2012. 48: p. 1854-1865.
    25. B. K. Kim, Y. J. Shin, S. M. Cho and H. M. Jeong, Shape‐memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content. Journal of Polymer Science Part B: Polymer Physics, 2000. 38: p. 2652-2657.
    26. B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul and J. W. Cho, Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules, 2001. 34: p. 6431-6437.
    27. E. Cipriani, M. Zanetti, V. Brunella, L. Costa and P. Bracco, Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polymer Degradation and Stability, 2012. 97: p. 1794-1800.
    28. J. T. Garrett, J. Runt and J. S. Lin, Microphase separation of segmented poly(urethane urea) block copolymers. Macromolecules, 2000. 33: p. 6353-6359.
    29. A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J. W. Leenslag and J. S. Higgins, Origin of multiple melting endotherms in a high hard block content polyurethane. 2. structural investigation. Macromolecules, 2004. 37: p. 1411-1421.
    30. J. A. Miller, S. B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson and S. L. Cooper, Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules, 1985. 18: p. 32-44.
    31. K. W. Chau and P. H. Geil, Domain morphology in polyurethanes. Polymer, 1985. 26: p. 490-500.
    32. D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. Mccarthy and G. M. Renwick, The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS‐DSC annealing study. Journal of Applied Polymer Science, 1998. 64: p. 803-817.
    33. L. M. Leung and J. T. Koberstein, DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules, 1986. 19: p. 706-713.
    34. A. Frick and A. Rochman, Characterization of TPU-elastomers by thermal analysis (DSC). Polymer Testing, 2004. 23: p. 413-417.
    35. R. W. Seymour and S. L. Cooper, DSC studies of polyurethane block copolymers. Journal of Polymer Science Part B Polymer Letters, 1971. 9: p. 689-694.
    36. R. W. Seymour and S. L. Cooper, Thermal analysis of polyurethane block polymers. Macromolecules, 1973. 6: p. 48-53.
    37. Y. Yanagihara, N. Osaka, S. Murayama and H. Saito, Thermal annealing behavior and structure development of crystalline hard segment domain in a melt-quenched thermoplastic polyurethane. Polymer, 2013. 54: p. 2183-2189.
    38. B. Notario, J. Pinto and M. A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016. 78-79: p. 93-139.
    39. L. J. Lee, C. C. Zeng, X. Cao, X. M. Han, J. Shen and G. J. Xu, Polymer nanocomposite foams. Composites Science and Technology, 2005. 65: p. 2344-2363.
    40. L. Chen, D. Rende, L. S. Schadler and R. Ozisik, Polymer nanocomposite foams. Journal of Materials Chemistry A, 2013. 1: p. 3837-3850.
    41. L. Heck Rhomie, A review of commercially used chemical foaming agents for thermoplastic foams. Journal of Vinyl and Additive Technology, 1998. 4: p. 113-116.
    42. A. Wong, L. H. Mark, M. M. Hasan and C. B. Park, The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. Journal of Supercritical Fluids, 2014. 90: p. 35-43.
    43. X. Dai, Z. Liu, Y. Wang, G. Yang, J. Xu and B. Han, High damping property of microcellular polymer prepared by friendly environmental approach. Journal of Supercritical Fluids, 2005. 33: p. 259-267.
    44. 何繼敏, 聚合物發泡材料及技術. 化學工業出版社, 中國北京市, 2008.
    45. H. Li, T. K. Sinha, J. S. Oh and J. K. Kim, Soft and flexible bilayer thermoplastic polyurethane foam for development of bioinspired artificial skin. ACS Applied Materials and Interfaces, 2018. 10: p. 14008-14016.
    46. Z.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Z.-N. Zhu and W.-K. Yuan, Foaming of polypropylene with supercritical carbon dioxide. Journal of Supercritical Fluids, 2007. 41: p. 299-310.
    47. J. S. Colton and N. P. Suh, Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987. 27: p. 500-503.
    48. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
    49. 陳瀅如, 以超臨界二氧化碳發泡製備石墨烯/熱塑性聚氨酯之微奈米孔洞發泡材料. 碩士論文, 國立臺北科技大學, 化學工程與生物科技系, 2015
    50. K. A. Arora, A. J. Lesser and T. J. Mccarthy, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 1998. 31: p. 4614-4620.
    51. S. N. Leung, A. Wong, L. C. Wang and C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    52. D. Raps, N. Hossieny, C. B. Park and V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015. 56: p. 5-19.
    53. S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polymer Engineering and Science, 1994. 34: p. 1148-1156.
    54. X. Sun, H. Liu, G. Li, X. Liao and J. He, Investigation on the cell nucleation and cell growth in microcellular foaming by means of temperature quenching. Journal of Applied Polymer Science, 2004. 93: p. 163-171.
    55. S. N. Leung, C. B. Park, D. Xu, H. Li and R. G. Fenton, Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006. 45: p. 7823-7831.
    56. D. Raps, T. Köppl, A. R. De Anda and V. Altstädt, Rheological and crystallisation behaviour of high melt strength polypropylene under gas-loading. Polymer, 2014. 55: p. 1537-1545.
    57. S. Ito, K. Matsunaga, M. Tajima and Y. Yoshida, Generation of microcellular polyurethane with supercritical carbon dioxide. Journal of Applied Polymer Science, 2007. 106: p. 3581-3586.
    58. Y. T. Guo, N. Hossieny, R. K. M. Chu, C. B. Park and N. Q. Zhou, Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chemical Engineering Journal, 2013. 214: p. 180-188.
    59. S. Costeux, CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131: p. 41293.
    60. E. K. Lee, Novel Manufacturing processes for polymer bead foams. PhD dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2010.
    61. H. Kuwabara and Y. Sudo, Preliminarily foamed particles of non-crosslinked polypropylene-type resin. US4587270A, 1986.
    62. N. Takeda and Y. Nakayama, Pre-expanded polyethylene beads and process for producing the same thereof. US6028121A, 2000
    63. N. Hossieny, Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism. PhD dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2014. p. 174-175.
    64. M. Nofar, Y. Guo and C. B. Park, Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Industrial and Engineering Chemistry Research, 2013. 52: p. 2297-2303.
    65. A. Pattanayak and S. C. Jana, High-strength and low-stiffness composites of nanoclay-filled thermoplastic polyurethanes. Polymer Engineering and Science, 2005. 45: p. 1532-1539.
    66. N. J. Hossieny, M. R. Barzegari, M. Nofar, S. H. Mahmood and C. B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014. 55: p. 651-662.
    67. Q. Tian, E. Takács, I. Krakovský, E. Z. Horváth, L. Rosta and L. Almásy, Study on the microstructure of polyester polyurethane irradiated in air and water. Polymers, 2015. 7: p. 1755-1766.
    68. S. Abouzahr, G. L. Wilkes and Z. Ophir, Structure-property behaviour of segmented polyether-MDI-butanediol based urethanes: effect of composition ratio. Polymer, 1982. 23: p. 1077-1086.
    69. J. W. C. Van Bogart, D. A. Bluemke and S. L. Cooper, Annealing-induced morphological changes in segmented elastomers. Polymer, 1981. 22: p. 1428-1438.
    70. T. R. Hesketh, J. W. C. Van Bogart and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering and Science, 1980. 20: p. 190-197.
    71. S. Velankar and S. L. Cooper, Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules, 2000. 33: p. 382-394.
    72. S. Velankar and S. L. Cooper, Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules, 1998. 31: p. 9181-9192.
    73. P. R. Laity, J. E. Taylor, S. S. Wong, P. Khunkamchoo, M. Cable, G. T. Andrews, A. F. Johnson and R. E. Cameron, Morphological changes in thermoplastic polyurethanes during heating. Journal of Applied Polymer Science, 2006. 100: p. 779-790.
    74. G. Smyth, E. M. Valles, S. K. Pollack, J. Grebowicz, P. J. Stenhouse, S. L. Hsu and W. J. Macknight, Development of crystallinity in a polyurethane containing mesogenic units. 1. Morphology and mechanism. Macromolecules, 1990. 23: p. 3389-3398.
    75. W. Zhai, Y. W. Kim and C. B. Park, Steam-chest molding of expanded polypropylene foams. 1. DSC simulation of bead foam processing. Industrial and Engineering Chemistry Research, 2010. 49: p. 9822-9829.
    76. M. R. Barzegari, N. Hossieny, D. Jahani and C. B. Park, Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams. Polymer, 2017. 114: p. 15-27.
    77. 康庭瑋, 高分子硬度對超臨界二氧化碳發泡技術製備熱塑性聚氨酯微奈米孔洞泡材之影響. 碩士論文, 國立臺北科技大學, 化學工程與生物科技系, 2015.
    78. 曾子娟, 以二氧化碳批次發泡不同軟段多元醇組成熱塑性聚氨酯之研究. 碩士論文, 國立臺灣科技大學, 材料科學與工程學系, 2016.
    79. K. Bagdi, K. Molnar, I. Sajo and B. Pukanszky, Specific interactions, structure and properties in segmented polyurethane elastomers. Express Polymer Letters, 2011. 5: p. 417-427.
    80. R. Liao, W. Yu and C. Zhou, Rheological control in foaming polymeric materials: II. Semi-crystalline polymers. Polymer, 2010. 51: p. 6334-6345.
    81. E. Naguib Hani, C. B. Park and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2003. 91: p. 2661-2668.
    82. G. Verreck, A. Decorte, H. Li, D. Tomasko, A. Arien, J. Peeters, P. Rombaut, G. Van Den Mooter and M. E. Brewster, The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. Journal of Supercritical Fluids, 2006. 38: p. 383-391.
    83. W. Zhai, T. Kuboki, L. Wang, C. B. Park, E. K. Lee and H. E. Naguib, Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Industrial and Engineering Chemistry Research, 2010. 49: p. 9834-9845.

    無法下載圖示 全文公開日期 2023/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE