簡易檢索 / 詳目顯示

研究生: 劉致維
CHIH-WEI LIU
論文名稱: 基於CPFD方法設計化學迴路燃燒程序於 110 kWth多階式流體化床反應器 之暖流模型與反應性模型
Based on CPFD method to design methane chemical loop combustion process in warm-flow model and reactivity model of 110 kWth multi-stage fluidized bed reactor.
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
郭修伯
Hsiu-Po Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 153
中文關鍵詞: 化學迴路燃燒技術多階式流體化床計算顆粒流體力學
外文關鍵詞: chemical looping combustion process, multi-stage fluidized bed, computational particle fluid dynamics
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在利用計算顆粒流體力學CPFD模擬軟體,設計一套符合110 kWth產能規格的多階式流體化床,設計的過程需確保顆粒流動於反應器內部保持順暢。以先前100 kWth多階式流體化床之孔板設計的冷流模擬作為基礎案例,找出顆粒與氣體流動於反應器內應解決之問題,例如:模擬時間過長、氣體隔絕效果不佳、顆粒無法順利循環等。透過暖流模型之概念重新設計反應器結構,此方法可大幅減少流動模型切換至反應性模型時對於輸送現象上造成的誤差。
暖流模型設計過程應將整套迴路系統區分為各個單元,在固定各單元之氣體進料量的條件下,進行幾何尺寸之評估,最終將各單元進行連接,完成整套迴路之暖流模型。本研究之暖流模型符合各項標準,如:粒可順利循環於整套迴路內、氣體隔絕效果優異、模型計算速度快速等各項優點。以計算時間較快的暖流模型,作為反應性模型流動狀態之初步估算,對於顆粒流動無明顯差異,代表方法是可行且有效率的。
本研究之反應性模型可穩定操作於110 kWth規格下,平均載氧體循環量為2288.20 g/s約為136812g/min。且燃料甲烷已可完全反應為二氧化碳與水蒸氣。Fe3O4可於空氣反應器內氧化為Fe2O3。循環料封內的氣體已將兩大反應器之產出氣體進行隔絕。
經由產能增減測試,可穩定操作於90 kWth至130 kWth規格下,減產過程中所提供之空氣量不足以將前段時間產生之Fe3O4總量進行完全氧化,透過過量空氣20 %之操作,可確保Fe3O4於空氣反應器內完全氧化為Fe2O3。透過燃料反應器擋板,可大幅減顆粒淘失量,使得系統操作範圍更具彈性。擋板設計亦對於壓力量測有正面的影響,可清楚區別各垂直位置之壓力數值,對於監控壓力響應來判別實廠反應器內顆粒之流化情形有顯著的幫助。


The purpose of this research is to use the CPFD simulation software to design a multi-stage fluidized bed that meets the 110 kWth capacity specification. Take the cold model simulation of the orifice plate design of the 100 kWth multi-stage fluidized bed as a basic case to find out the problems that should be solved, such as: too large simulation time, poor gas isolation effect, and inability of particles smooth circulation and etc... By redesigning the reactor structure through the concept of the warm flow model, this method can greatly reduce the error caused by the transport phenomenon when the flow model is switched to the reactive model.
In the process of warm flow model design, the full loop system should be divided into individual units. The geometrical dimensions should be evaluated under the condition of fixing the gas feed volume of each unit. Finally, the units are connected to complete the warm flow model of the full loop. The warm flow model in this study meets various standards, such as: particles can circulate smoothly in the full loop system, excellent gas isolation effect, fast model calculation speed, etc... The warm flow model with faster calculation time is used as a preliminary estimation of the flow state of the reactive model. There is no significant difference in particle flow, and the method is feasible and efficient.
The reactivity model in this study can operate stably under the 110 kWth specification, and the average oxygen carrier circulation rate is 2288.20 g/s.that is about 136812 g/min The methane can be completely reacted into carbon dioxide and water vapor. Fe3O4 can be oxidized to Fe2O3 in an air reactor. The gas in the loop seal has isolated the produced gas from the two reactors.
Through the capacity increase and decrease test, it can operate stably under the specifications of 90 kWth to 130 kWth. The amount of air provided during the production reduction process is not enough to completely oxidize the total amount of Fe3O4 generated in the previous period. The operation of 20% excess air can ensure Fe3O4 is completely oxidized to Fe2O3 in the air reactor. Through the baffle of the fuel reactor, the particle elutriation loss can be greatly reduced, making the operating range of the system more flexible. The baffle design also has a positive effect on pressure measurement. It can clearly distinguish the pressure values of each vertical position. It is a significant help for monitoring the pressure response to determine the fluidization of particles in the reactor of the actual plant.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 8 1.3 組織章節 9 第2章 文獻回顧 11 2.1 化學迴路程序 11 2.2 流動模型之幾何結構 15 2.3 化學反應動力式與反應模擬 22 2.4 多階孔板式冷流模型-石英砂 28 2.5 多階孔板式暖流模型-巴西鐵礦 32 2.5.1 暖流模型-改FR第五階高度 38 2.5.2 暖流模型-雙循環料封結構 42 第3章 多階擋板式暖流模型之開發 46 3.1 前言 46 3.1.1 計算操作進氣條件 46 3.1.2 載氧體循環問題 51 3.1.3 調整操作變數範圍 55 3.1.4 加速模型計算速度 56 3.2 反應器設計規劃 56 3.2.1 空氣反應器 57 3.2.2 旋風分離器 63 3.2.3 循環料封 71 3.2.4 燃料反應器 73 3.3 整套迴路之細部結構調整 76 3.3.1 調整下方循環料封之幾何結構 81 3.3.2 調整燃料反應器上方乾絃區結構 85 3.4 多階擋板式暖流模型-最佳案例 86 第4章 多階擋板式化學反應模型之開發 92 4.1 前言 92 4.2 體積平均反應與離散顆粒反應 93 4.3 化學反應模型之細部調整 95 4.3.1 調整燃料反應器擋板插入深度 100 4.3.2 調整FR擋板插入深度案例-替換顆粒為巴西鐵礦 106 4.3.3 調整FR下方擋板角度案例 111 4.3.4 調整FR下方排料管位置與尺寸 114 4.4 多階擋板式化學反應模型-最佳案例 115 4.5 產能增減測試 126 4.5.1 產能增減±10 % 126 4.5.2 產能增減±10 %、過量空氣20 % 129 4.5.3 產能增減±20 %、過量空氣20 % 132 4.6 燃料反應器有無擋板比較 135 第5章 結論與未來展望 142 5.1 結論 142 5.2 未來與展望 143 參考文獻 145

[1] Abad, A., Adánez, J., García-Labiano, F., Luis, F., Gayán, P., & Celaya, J. (2007). Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, 62(1-2), 533-549.
[2] Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., & Luis, F. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 38(2), 215-282.
[3] Alobaid, F., Ohlemüller, P., Ströhle, J., & Epple, B. (2015). Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant. Energy, 93, 2395-2405.
[4] Ariyaratne, WK Hiromi, et al. "CFD approaches for modeling gas-solids multiphase flows–A review." Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016. No. 142. Linköping University Electronic Press, 2018.
[5] Berguerand, N., & Lyngfelt, A. (2008). The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. International Journal of Greenhouse gas control, 2(2), 169-179.
[6] Bhoje, R., Kale, G. R., Labhsetwar, N., & Borkhade, S. (2013). Chemical looping combustion of methane: A technology development view. Journal of energy, 2013.
[7] Breault, R. W., Weber, J., Straub, D., & Bayham, S. (2017). Computational Fluid Dynamics Modeling of the Fuel Reactor in NETL's 50 kWth Chemical Looping Facility. Journal of Energy Resources Technology, 139(4).
[8] Bustamante, et al., 2004. Kinetics of the homogeneous reverse water–gas shiftreaction at high temperature. AIChE J. 50 (5), 1028–1041.
[9] Bustamante, et al., 2005. Uncatalyzed and wall-catalyzed forward water–gas shiftreaction kinetics. AIChE J. 51 (5),
[10] Chen, X., Ma, J., Tian, X., Wan, J., & Zhao, H. (2019). CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal. International Journal of Greenhouse Gas Control, 90, 102800.
[11] Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. Rock physics and phase relations: a handbook of physical constants, 3, 105-126.
[12] Eikeland, M. S., & thapa, R. K. (2017). Stepwise analysis of gasification reactions with Aspen Plus and CPFD.
[13] Fan, L. S. (2011). Chemical looping systems for fossil energy conversions. John Wiley & Sons.
[14] Fan, L. S., Chung, E. Y., Bayham, S. C., Kathe, M. V., Tong, A., & Zeng, L. (2015). Chemical Looping Combustion and Gasification. Handbook of Clean Energy Systems, 1-22.
[15] Ge, H., Zhang, H., Guo, W., Song, T., & Shen, L. (2019). System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, 241, 118-128.
[16] Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder technology, 58(1), 63-70.
[17] Kim, S. W., Namkung, W., & Kim, S. D. (1999). Solids flow characteristics in loop-seal of a circulating fluidized bed. Korean Journal of Chemical Engineering, 16(1), 82-88.
[18] Kuipers, J. A. M., Tammes, H., Prins, W., & van Swaaij, W. P. M. (1992). Experimental and theoretical porosity profiles in a two-dimensional gas-fluidized bed with a central jet. Powder technology, 71(1), 87-99.
[19] Kunii, D.; Levenspiel, O. Fluidization Engineering, Butterworth-Heinemann, Boston. (1968)
[20] Li, F., Zeng, L., & Fan, L. S. (2010). Biomass direct chemical looping process: process simulation. Fuel, 89(12), 3773-3784.
[21] Linderholm, Carl, et al. "Chemical-looping combustion of solid fuels–Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite." Fuel 102 (2012): 808-822.
[22] Liang, Y., Zhang, Y., Li, T., & Lu, C. (2014). A critical validation study on CPFD model in simulating gas–solid bubbling fluidized beds. Powder Technology, 263, 121-134.
[23] Lyngfelt, A. (2014). Chemical-looping combustion of solid fuels–status of development. Applied Energy, 113, 1869-1873.
[24] Lyngfelt, A., Johansson, M., & Mattisson, T. (2008). Chemical-looping combustion-status of development
[25] Mahalatkar, K. K. (2010). Computational Fluid Dynamic Studies of Chemical Looping Combustion Systems. P60
[26] Mahalatkar, K., Kuhlman, J., Huckaby, E. D., & O'Brien, T. (2011). Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels. Chemical engineering science, 66(3), 469-479.
[27] Mattisson, T., Lyngfelt, A., & Cho, P. (2001). The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 80(13), 1953-1962.
[28] Monazam, E. R., Breault, R. W., Siriwardane, R., Richards, G., & Carpenter, S. (2013). Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism. Chemical Engineering Journal, 232, 478-487.
[29] Parker, J. M. (2014). CFD model for the simulation of chemical looping combustion. Powder technology, 265, 47-53.
[30] Sandvik, P., Wang, W., Kathe, M., Kong, F., & Fan, L. S. (2019). Operating strategy of chemical looping systems with varied reducer and combustor pressures. Industrial & Engineering Chemistry Research, 58(13), 5228-5235.
[31] Shao, Y., Agarwal, R. ., Wang, X., & Jin, B. (2020). Numerical simulation of a 3D full loop iG-CLC system including a two-stage counter-flow moving bed air reactor. Chemical Engineering Science, 217, 115502.
[32] Shao, Y., Agarwal, R. K., Wang, X., & Jin, B. (2021). Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion. Journal of Energy Resources Technology, 143(8).
[33] Shen, L., Wu, J., Xiao, J., Song, Q., & Xiao, R. (2009). Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier. Energy & Fuels, 23(5), 2498-2505.
[34] Snider, D. M., Clark, S. M., & O'Rourke, P. J. (2011). Eulerian–Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chemical engineering science, 66(6), 1285-1295.
[35] Solli, K. A., Thapa, R. K., & Moldestad, B. M. E. (2018, December). Screening of kinetic rate equations for gasification simulation models. In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016 (No. 142, pp. 105-112). Linköping University Electronic Press.
[36] Son, S. R., & Kim, S. D. (2006). Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops. Industrial & Engineering Chemistry Research, 45(8), 2689-2696.
[37] Su, M., Zhao, H., & Ma, J. (2015). Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed. Energy Conversion and Management, 105, 1-12.
[38] Syamlal, M., & Bissett, L. A. (1992). METC gasifier advanced simulation (MGAS) model (No. DOE/METC-92/4108). USDOE Morgantown Energy Technology Center, WV (United States).
[39] Syamlal, M., & Bissett, L. A. (1992). METC gasifier advanced simulation (MGAS) model (No. DOE/METC-92/4108). USDOE Morgantown Energy Technology Center, WV (United States).
[40] Tong, A.; Bayham, S.; Kathe; M. V., Zeng; L., Luo, S.; Fan, L. S. Iron-Based Syngas Chemical Looping Process and Coal-Direct Chemical Looping Process Development at Ohio State University. 2nd International Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. (2012).
[41] Umeki, K., Yamamoto, K., Namioka, T., & Yoshikawa, K. (2010). High temperature steam-only gasification of woody biomass. Applied energy, 87(3), 791-798
[42] Wang, X., Jin, B., Zhang, Y., Zhang, Y., & Liu, X. (2013). Three dimensional modeling of a coal-fired chemical looping combustion process in the circulating fluidized bed fuel reactor. Energy & fuels, 27(4), 2173-2184.
[43] Watanabe, H., Ashizawa, M., Otaka, M., Hara, S., & Inumaru, A. (2002). Development on numerical simulation technology of heavy oil gasifier. CRIEPI reports W, 1023, 2002.
[44] Wen, C. Y., Chen, H., & Onozaki, M. (1982). User's manual for computer simulation and design of the moving-bed coal gasifier. Final report (No. DOE/MC/16474-1390). West Virginia Univ., Morgantown (USA). Dept. of Chemical Engineering.
[45] Yoon, H., Wei, J., & Denn, M. M. (1978). A model for moving‐bed coal gasification reactors. AIChE Journal, 24(5), 885-903.
[46] Zeng, L., Kathe, M. V., Chung, E. Y., & Fan, L. S. (2012). Some remarks on direct solid fuel combustion using chemical looping processes. Current Opinion in Chemical Engineering, 1(3), 290-295.
[47] Zhu, X., Shen, T., Bollas, G., & Shen, L. (2021). Design and operation of a multi-stage reactor system for chemical looping combustion process. Fuel Processing Technology, 215, 106748
[中文文獻]

[48] 陳則綱,多階式流體化床於化學迴路程序之系統功率與操作變數分析,碩士論文,國立台灣科技大學化學工程所,2019年
[49] 彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期,111-119,臺北,臺灣,(2014)。
[50] 曾子維,交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究,碩士論文,國立台灣科技大學機械工程所,2016年
[51] 黃宜中,板塔式設計應用於增進交聯式流體化床熱質傳之研究碩士論文,國立台灣科技大學化學工程所,2020年
[52] 黃郁茹,應用交聯式流體化床於化學迴圈燃燒程序之運行參數研究,碩士論文,國立臺灣科技大學化學工程所,2016年。
[53] 戴楷錦,化學迴路程序基於計算流體力學與冷模實驗之多階循環流體化床設計,碩士論文,國立台灣科技大學化學工程所,2019年

無法下載圖示 全文公開日期 2026/07/28 (校內網路)
全文公開日期 2026/07/28 (校外網路)
全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE