簡易檢索 / 詳目顯示

研究生: 黃郁茹
Yu-Ju Huang
論文名稱: 應用交聯式流體化床於化學迴圈燃燒程序之運行參數研究
Study on Operation Parameters for Interconnected Fluidized Bed in Chemical Looping Combustion Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 94
中文關鍵詞: 化學迴圈燃燒程序交聯式流體化床固體循環量壓力差
外文關鍵詞: chemical-looping combustion process, interconnected fluidized bed, solid circulation rate, pressure drop
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在化學迴圈燃燒系統中,固體循環量是一個重要的參考,取決於系統的設計、載氧體的運行狀況。本研究探討1 kWth之交聯式流體化床之冷態模型的氣-固流動現象,空氣反應器為流化床,燃料反應器為鼓泡床,以巴西礦石作為載氧體。探討不同固體運行量、空氣反應器與密封迴路的氣體流量,空氣反應器的流量維持20 L/min,改變空氣反應器與側流的流量,分析各部位的壓力分佈,藉由提升管的壓力差求出顆粒循環速率,找出最佳運行參數,進一步測試密封迴路的分配比與隔絕效果,結果顯示密封迴路的隔絕效果很好,但在旋風分離器出口測到追蹤氣體,表示料腿的隔絕效果不如預期。在交聯式流體化床中,載氧體的磨耗特性顯示,天然鐵礦適合運用在交聯式流體化床中,在5小時的運行中,磨損量為0.14 wt%,使用壽命為3571小時。
    冷態模型能長時間穩定運行後,建立一1 kWth熱態模型,以澳洲礦石作為載氧體,通入空氣加熱到950℃,探討側流的影響,藉由記錄壓力變化,計算出系統內的固體循環量,數據顯示添加側流會降低固體循環量,顯示冷態模型與熱態模型實驗結果不完全相同,且在燃料反應器中會有部分鐵礦不能順利循環,而有FeO相態的生成,然而反應器的嚴重形變,則需進一步的改善設計。


    In a chemical-looping combustion (CLC) process, the solid circulation rate (GS) is a key parameter that is affected by the whole system design and operating conditions of oxygen carries. In this study, a 1 kWth cold flow model of interconnected fluidized bed for CLC system was established to investigate the transferring phenomena of gas and solid. The reactor type of air and fuel reactor are fluidized bed and bubbling bed, respectively. The oxygen carriers were prepared from the iron ore of Brazil. The effects of operation parameters, such as bed inventory, gas flow of air reactor and loop-seal, on the solid circulation rate were investigated. The gas flow rate to air reactor was kept at 20 L/min with variant major and secondary gas flow rates. The pressure distribution in each part of this system was monitored and the solid circulation rate was calculated from the pressure drop of raising tube. The optimal operation parameters was obtained via this experiment. The gas distribution ratio and seal effect of this designed loop-seal were further examined. The result indicated it exhibits the effective separating function for air and furl reactors. However, the trace gas was found in the exit of cyclone, indicating the sealing property of dipleg of cyclone was not sufficient. The attrition rate of oxygen carrier in this CLC system is measured. After 5 h of operation, 0.14 wt% of oxygen carrier was blown away, indicating the lifetime was 3571 h.
    A 1 kWth hot prototype of CLC system was further established with using iron ore of Australia as oxygen carrier. The effect of secondary air flow in the air reactor on solid circulation rate was studied at 950oC. The data showed that the increase in secondary air flow rate will decrease the solid circulation rate. The data from hot prototype and cold model were not well consistent with each other. A partial ore was not circulated smoothly in the hot prototype, resulting in the generation of FeO phase. The shape of CLC reactors was obvious changed under the hot condition and it retarded the solid circulation. The design of hot prototype should be further improved for long-term operation.

    摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 化學迴圈燃燒程序 3 1.3 載氧體選擇 6 1.4 化學迴圈燃燒程序的成本 7 1.5 反應器設計 10 1.6 研究動機 10 第二章 文獻回顧 12 2.1 流體化現象 12 2.2 終端速度 14 2.3 循環速率 18 2.4 流動能力 19 2.5 交聯式流體化床 20 2.5.1 冷態模型模擬 20 2.5.2 冷態模型 22 2.5.3 熱態模型 25 2.5.4 化學迴圈燃燒試驗廠 27 2.5.4.1 氣體燃料 27 2.5.4.2 固體燃料 29 2.6 天然鐵礦應用於化學迴圈 31 第三章 研究方法 33 3.1 實驗規劃 33 3.2 實驗藥品 35 3.3 實驗儀器 35 3.4 冷態模型 39 3.5 熱態模型 41 3.6 理想最大功率 44 第四章 結果與討論 45 4.1 天然鐵礦物性分析 45 4.1.1 元素分析 46 4.1.2 熱重分析儀反應測試 46 4.1.3 晶相結構分析 47 4.1.4 鐵基載氧體的反應機制 48 4.2 交聯式流體化床之設計 49 4.3 冷態模型 49 4.3.1 空氣反應器之操作參數 52 4.3.2 氣體密封迴路之操作參數 58 4.3.3 鐵砂重量對系統的影響 60 4.3.4 最佳操作參數下運行 62 4.3.5 磨損率 64 4.4 熱態模型 65 4.4.1 空氣反應器之操作參數 66 4.4.2 澳洲鐵礦反應後物性分析 70 4.4.2.1 XRD 71 4.4.2.2 表面形貌分析 72 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 76 第六章 參考文獻 79

    [1] International Energy Agency, “Energy Technology Perspectives 2015”, OECD/IEA, (2015).
    [2] S. Penthor, M. Stollhof, T. Pröll, H. Hofbauer, “Detailed fluid dynamic investigations of a novel fuel reactor concept for chemical looping combustion of solid fuels”, Powder Technology, 287, pp. 61-69 (2016).
    [3] 我國燃料燃燒二氧化碳排放統計, 經濟部能源局, pp. 1-59 (2015)
    [4] 我國碳捕集技術介紹與展望, 徐恆文, 工業技術研究院綠能與環境研究所, CCS減量技術研討會 (2011).
    [5] A.A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications -A review“, Energy, 35, pp. 2610-2628 (2010).
    [6] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture“, Applied Thermal Engineering, 30, pp. 53-62 (2010).
    [7] Carbon Capture & Storage Association
    (http://www.ccsassociation.org/what-is-ccs/capture/pre-combustion-capture/)
    [8] 顧洋、邱炳嶔、吳鉉智, “化學迴圈程序技術及其在節能減碳領域之應用”, 臺灣能源期刊, 第一卷, 第一期, pp. 35-50 (2012).
    [9] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies”, Progress in Energy and Combustion Science, 38, pp. 215-282 (2012).
    [10] A. Bischi, Ø. Langrgen, I. Saanum, J. Bakken, M. Seljeskog, M. Bysveen, J.-X. Morin, O. Bolland, “Design study of a 150 kWth double loop circulating fluidized bed reactor system for chemical looping combustion with focus on industrial applicability and pressurization”, International Journal of Greenhouse Gas Control, 5, pp. 467-474 (2011).
    [11] L.S. Fan, Chemical Looping Systems for Fossil Energy Conversions, WILEY, (2010).
    [12] D. Kunii, O. Levenspiel, Fluidization Engineering, H Brenner, (1991).
    [13] A. Haider, O. Levenspiel , “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles”, Powder Technology, 58, pp. 63-70 (1989).
    [14] 錢建嵩, 流體化床技術, 高立圖書有限公司, (2011).
    [15] D. Geldart, “Gas Fluidization Technology”, WILEY, (1987).
    [16] Y. Alghamdi, Z. Peng, K. Shah, B. Moghtaderi, E. Doroodchi, “Predicting the solid circulation rate in chemical looping combustion systems using pressure drop measurements”, Powder Technology, 286, pp. 572-581 (2015).
    [17] C. Linderholm, T. Mattisson, A. Lyngfelt, “Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel”, Fuel, 88, pp. 2083-2096 (2009).
    [18] Y.A. Alghamdi, E. Doroodchi, B. Moghtaderi, “Mixing and segregation of binary oxygen carrier mixtures in a cold flow model of a chemical looping combustor”, Chemical Engineering Journal, 223, pp. 772-784 (2013).
    [19] C. Linderholm, M. Schmitz, “Chemical-looping combustion of solid fuels in a 100 kW dual circulating fluidized bed system using iron ore as oxygen carrier”, Journal of Environmental Chemical Engineering, 4, pp. 1029-1039 (2016).
    [20] Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Liu, W. Porter, Developing Solid Oral Dosage Forms: Pharmaceutical Theory & Practice, Academic Press, (2009)
    [21] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya, “Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion”, Chemical Engineering Science, 62, pp. 533-549 (2007).
    [22] Z. Peng, E. Doroodchi, Y.A. Alghamdi, K. Shah, C. Luo, B. Moghtaderi, “CFD-DEM simulation of solid circulation rate in the cold flow model of chemical looping systems”, Chemical Engineering Research and Design, 95, pp. 262-280 (2015).
    [23] E. Johansson, A. Lyngfelt, T. Mattisson, F. Johnsson, “Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion”, Powder Technology, 134, pp. 210-217 (2003).
    [24] 吳家樺、沈來宏、肖軍、盧海勇, “串行流體床內氣固流動控制”, 化工學報, 58, pp. 2753-2758 (2007).
    [25] T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal”, International Journal of Greenhouse Gas Control, 11, pp. 326-336 (2012).
    [26] E. Johansson, T. Mattisson, A. Lyngfelt, H. Thunman, “A 300 W laboratory reactor system for chemical-looping combustion with particle circulation”, Fuel, 85, pp. 1428-1438 (2006).
    [27] A. Lyngfelt, H. Thunman, “Construction and 100 h of operational experience of a 10-kW chemical-looping combustor”, Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project, 1, chapter 36 (2005).
    [28] S. Penthor, F. Zerobin, K. Mayer, T. Pröll, H. Hofbauer, “Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels”, Applied Energy, 145, pp. 52-59 (2015).
    [29] C. Linderholm, M. Schmitz, P. Knutsson, A. Lyngfelt, “Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier”, Fuel, 166, pp. 533-542 (2016).
    [30] J. Ströhle, M. Orth, B. Epple, “Design and operation of a 1 MWth chemical looping plant”, Applied Energy, 113, pp. 1490-1495 (2014).
    [31] M.A. Pans, P. Gayán, L.F. de Diego, F. García-Labiano, A. Abad, J. Adánez, “Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels”, Chemical Engineering Research and Design, 93, pp. 736-746 (2015).

    無法下載圖示 全文公開日期 2021/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE