簡易檢索 / 詳目顯示

研究生: 周恩韋
En-Wei Chou
論文名稱: 一氧化碳及甲醛於ZnO(101 ̅0)表面感測性能之理論計算研究:金屬摻雜的影響
A theoretical study on sensing performance of ZnO (101 ̅0) surface for the detection of CO and HCHO: Effects of Metal Dopants
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
陳良益
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 一氧化碳甲醛感測器金屬參雜密度泛函理論
外文關鍵詞: carbon monoxide, formaldehyde, sensor, doped, DFT
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣中對人體有害的物質例如: volatile organic compounds (VOCs)、氮氧化物(NOx)、一氧化碳(CO)、粉塵微粒(PM10)…等。由於一氧化碳以及甲醛為最容易於室內接觸到的有毒氣體,所以假若能及時偵測到它們的存在,便可以成功的避免暴露於有毒氣體環境之下,並即時做出相對應的安全措施。
    在這篇論文中,使用密度泛函理論(DFT) 模擬不同過渡金屬(鈦,鉻,鎳,鋁) ,取代氧化鋅表面上的鋅金屬。並計算吸附一氧化碳以及甲醛吸附於表面之後的導電度變化以及磁量變化。在一氧化碳偵測方面,我們發現其主要是由配位鍵結 (dative bond) 以及反饋π 鍵 (π-back donation) 與參雜氧化鋅表面作用,作用力的強弱將會影響表面對於一氧化碳感測之性質。我們更進一步發現,參雜金屬的d band center與一氧化碳的前緣分子軌域之能量差距決定上述這兩種作用力的大小與類型。在甲醛偵測方面,我們發現由於配位鍵結以及C-H⋯O氫鍵同時作用於甲醛分子以及參雜氧化鋅表面,進而產生相互協同作用 (cooperative interaction),另一方面,當反饋π 鍵 (π-back donation) 與C-H⋯O氫鍵同時作用時,則會產生anti-cooperative interaction. 我們的計算結果指出,經由改變能隙 (band gap) 以及磁量變化,參雜鈦以及鋁金屬於氧化鋅表面上分別提高了表面對於一氧化碳以及甲醛的感測靈敏度(sensitivity),並且可以運用在導電度以及磁量感測器上。


    Nowadays controlling indoor air quality is attracting immense research attention since humans are spending more time in the indoor activities. Carbon monoxide (CO) and Formaldehyde (HCHO) is the most common highly toxic gases, which are found in many households and offices. Sensing the toxic gases from atmosphere, which helps us to monitor and obtain more response time to avoid from continuous exposure of CO and HCHO. Therefore in this study, we have performed density functional theory calculations with the generalized gradient approximation for designing the efficient ZnO based sensor. Further, we have considered the different metal atoms such as Cr, Ti, Ni, and Al for doping on the ZnO surface and investigated their electronic and magnetic properties for the detection of CO and HCHO. Our results indicate that the both adsorbents have interacted with surface metal atoms via either dative bond or π-back donation and combination of both. We found that these types of interaction controls their sensing ability. We also analyzed the interaction between adsorbents and the surface metal atoms using density of states (DOS), electron density difference (EDD) contour plots, and change in magnetic moments and compared how the doping of metal atoms affects both electronic and magnetic properties. Our DFT results show that the location of the d band center determines the types of CO interaction for different metal doped ZnO surface and we found that the Ti doped ZnO surface will be the good sensing material for CO compared to others. In the case of HCHO, a cooperative interaction such as C-H⋯O hydrogen bond and dative bond formed between HCHO and different metal doped ZnO surface, except Ti doped surface. Our results proved that the sensing properties of an oxide material can be modified by means of suitable doping. Based on our results we expect that Ti and Al doped ZnO surface will be the suitable material to enhance the sensitivity to detect CO and HCHO at room temperature, respectively.

    Abstract I 摘要 II 致謝 III CONTENTS IV INDEX OF FIGURES VII INDEX OF TABLES IX 1. Introduction 1 1.1 Characteristics of CO 2 1.1.1 Physical properties of CO 2 1.1.2 Chemical properties of CO 2 1.2 Characteristics of Formaldehyde 5 1.2.1 Physical properties of formaldehyde 5 1.2.2 Chemical properties of formaldehyde 5 1.3 Hazards of CO and HCHO 7 1.4 Sources of CO and HCHO 9 1.5 Gas sensors 11 1.5.1 Gas sensing methods 12 1.5.2 Detecting methods based on variation of electrical properties. 15 1.6 Present study 19 2. Metal atoms doped ZnO (1010) surface for CO sensing 20 2.1 Introduction 20 2.2 Computational details 20 2.3 Adsorption energy. 22 2.4 Electronic properties 25 2.4.1 Density of states (DOS) 25 2.4.2 d band center 30 2.4.3 Vibrational Frequencies 32 2.5 Hirschfeld charge difference and electron density difference (EDD) 34 2.5.1. Hirschfeld charge difference 34 2.5.2. Electron density difference (EDD) 36 2.6 Resistivity increment 38 2.7 Magnetic moment difference 40 3. Metal atoms doped ZnO(1010) surface for formaldehyde sensing 41 3.1 Introduction 41 3.2 Computational details 42 3.3 Adsorption energy 44 3.4 Electronic property 48 3.4.1 Density of states (DOS) 48 3.5 Electron density difference (EDD) and Hirschfield charge difference 51 3.5.1 Electron density difference 51 3.5.2 Hirschfeld charge difference (HCD) 53 3.5.3 Vibrational Frequencies 55 3.6 Resistivity increment 57 3.7 Magnetic moment difference 59 4. Conclusion 61 5. References 63 6. Appendixes 69

    1. Chapman, J.T., et al., Carbon monoxide attenuates aeroallergen-induced inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001. 281(1): p. L209.
    2. Motterlini, R. and L.E. Otterbein, The therapeutic potential of carbon monoxide. Nat Rev Drug Discov, 2010. 9(9): p. 728-743.
    3. Nguyen, D. and C. Boyer, Macromolecular and Inorganic Nanomaterials Scaffolds for Carbon Monoxide Delivery: Recent Developments and Future Trends. ACS Biomaterials Science & Engineering, 2015. 1(10): p. 895-913.
    4. Wang, H., et al., Donor Treatment With Carbon Monoxide Can Yield Islet Allograft Survival and Tolerance. Diabetes, 2005. 54(5): p. 1400.
    5. Hanson, D., EPA issues report on indoor pollution. Chemical & Engineering News Archive, 1989. 67(33): p. 6.
    6. Ishizu, Y., General equation for the estimation of indoor pollution. Environmental Science & Technology, 1980. 14(10): p. 1254-1257.
    7. Andraos, J., Safety/Hazard Indices: Completion of a Unified Suite of Metrics for the Assessment of “Greenness” for Chemical Reactions and Synthesis Plans. Organic Process Research & Development, 2013. 17(2): p. 175-192.
    8. Young, J.A., Formaldehyde. Journal of Chemical Education, 2009. 86(3): p. 299.
    9. Cipolla, M., et al., Volatile Organic Compounds in Anatomical Pathology Wards: Comparative and Qualitative Assessment of Indoor Airborne Pollution. Int J Environ Res Public Health, 2017. 14(6).
    10. Franks, S.J., A mathematical model for the absorption and metabolism of formaldehyde vapour by humans. Toxicol Appl Pharmacol, 2005. 206(3): p. 309-20.
    11. Speit, G., P. Schütz, and O. Merk, Induction and repair of formaldehyde-induced DNA–protein crosslinks in repair-deficient human cell lines. Mutagenesis, 2000. 15(1): p. 85-90.
    12. Science, S., City gas chief source of carbon monoxide deaths. Journal of Chemical Education, 1930. 7(7): p. 1693.
    13. Bistoni, G., et al., How [small pi] back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chemical Science, 2016. 7(2): p. 1174-1184.
    14. Katz, S.H., The Hazard of Carbon Monoxide to the Public and to Industry. Industrial & Engineering Chemistry, 1925. 17(6): p. 555-557.
    15. Ferro-Costas, D., et al., Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules. Phys Chem Chem Phys, 2014. 16(20): p. 9249-58.
    16. Sircar, K., et al., Carbon monoxide poisoning deaths in the United States, 1999 to 2012. Am J Emerg Med, 2015. 33(9): p. 1140-5.
    17. Weaver, L.K., K.J. Valentine, and R.O. Hopkins, Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. Am J Respir Crit Care Med, 2007. 176(5): p. 491-7.
    18. Dorozhkin, L.M. and I.A. Rozanov, Acoustic Wave Chemical Sensors for Gases. Journal of Analytical Chemistry, 2001. 56(5): p. 399-416.
    19. Kauffmann, T.H. and M.D. Fontana, Optical sensor of salt concentration: Uncertainty evaluation. Sensors and Actuators B: Chemical, 2012. 161(1): p. 21-27.
    20. Liu, X., et al., A survey on gas sensing technology. Sensors (Basel), 2012. 12(7): p. 9635-65.
    21. Palmisano, V., et al., Selectivity and resistance to poisons of commercial hydrogen sensors. International Journal of Hydrogen Energy, 2015. 40(35): p. 11740-11747.
    22. Matatagui, D., et al., A magnonic gas sensor based on magnetic nanoparticles. Nanoscale, 2015. 7(21): p. 9607-13.
    23. Qin, Y., M. Cui, and Z. Ye, Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation. Applied Surface Science, 2016. 379: p. 497-504.
    24. Bârsan, N. and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity. Journal of Physics: Condensed Matter, 2003. 15(20): p. R813.
    25. Al-Hardan, N.H., et al., ZnO thin films for VOC sensing applications. Vacuum, 2010. 85(1): p. 101-106.
    26. Tian, H., et al., Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. ACS Sensors, 2016. 1(3): p. 243-250.
    27. Li, J., H. Fan, and X. Jia, Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing Application. The Journal of Physical Chemistry C, 2010. 114(35): p. 14684-14691.
    28. Huang, M. and S. Fabris, CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. The Journal of Physical Chemistry C, 2008. 112(23): p. 8643-8648.
    29. Farmanzadeh, D. and L. Tabari, DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor. Applied Surface Science, 2015. 324: p. 864-870.
    30. Breedon, M., M.J.S. Spencer, and I. Yarovsky, Adsorption of NO2 on Oxygen Deficient ZnO(21̅1̅0) for Gas Sensing Applications: A DFT Study. The Journal of Physical Chemistry C, 2010. 114(39): p. 16603-16610.
    31. Yoon, Y.S., et al., Work function effects of ZnO thin film for acetone gas detection. Ceramics International, 2012. 38: p. S653-S656.
    32. Ma, D., et al., First-principles study of O2 adsorption on Al-doped ZnO(<mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mn>1</mml:mn><mml:mtext> </mml:mtext><mml:mn>0</mml:mn><mml:mtext> </mml:mtext><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo stretchy="true">¯</mml:mo></mml:mover><mml:mtext> </mml:mtext><mml:mn>0</mml:mn></mml:mrow></mml:math>) surface. Sensors and Actuators B: Chemical, 2016. 224: p. 372-380.
    33. Hu, J., et al., Copper Deposition and Growth over ZnO Nonpolar (101̅0) and (112̅0) Surfaces: A Density Functional Theory Study. The Journal of Physical Chemistry C, 2009. 113(17): p. 7227-7235.
    34. Marana, N.L., et al., Electronic and Structural Properties of the (101̅0) and (112̅0) ZnO Surfaces. The Journal of Physical Chemistry A, 2008. 112(38): p. 8958-8963.
    35. Tang, Q.-L. and Q.-H. Luo, Adsorption of CO2at ZnO: A Surface Structure Effect from DFT+UCalculations. The Journal of Physical Chemistry C, 2013. 117(44): p. 22954-22966.
    36. Wander, A. and N.M. Harrison, The structure of higher defective ZnO(101̄0). Surface Science, 2003. 529(3): p. L281-L284.
    37. Wander, A. and N.M. Harrison, An ab Initio Study of Hydrogen Adsorption on ZnO(101̄0). The Journal of Physical Chemistry B, 2001. 105(26): p. 6191-6193.
    38. Paraguay D, F., et al., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 2000. 373(1): p. 137-140.
    39. Shishiyanu, S.T., T.S. Shishiyanu, and O.I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sensors and Actuators B: Chemical, 2005. 107(1): p. 379-386.
    40. Gong, H., et al., Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 2006. 115(1): p. 247-251.
    41. Wilson, W.W., et al., Textured ZnO Thin Films for Solar Cells Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1991. 30(3B): p. L441.
    42. Bai, S., et al., Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures. Journal of Materials Chemistry A, 2013. 1(37): p. 11335.
    43. Hjiri, M., et al., Al-doped ZnO for highly sensitive CO gas sensors. Sensors and Actuators B: Chemical, 2014. 196: p. 413-420.
    44. Kim, K., et al., Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films, 2009. 518(4): p. 1190-1193.
    45. Han, N., et al., Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sensors and Actuators B: Chemical, 2009. 138(1): p. 228-235.
    46. Li, L.M., et al., Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnology, 2007. 18(22): p. 225504.
    47. Pala, R.G.S. and H. Metiu, Modification of the Oxidative Power of ZnO(101̄0) Surface by Substituting Some Surface Zn Atoms with Other Metals. The Journal of Physical Chemistry C, 2007. 111(24): p. 8617-8622.
    48. Pala, R.G.S., et al., CO oxidation by Ti- and Al-doped ZnO: Oxygen activation by adsorption on the dopant. Journal of Catalysis, 2009. 266(1): p. 50-58.
    49. Hjiri, M., et al., Excellent CO gas sensor based on Ga-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2015. 26(8): p. 6020-6024.
    50. Hadipour, N.L., A. Ahmadi Peyghan, and H. Soleymanabadi, Theoretical Study on the Al-Doped ZnO Nanoclusters for CO Chemical Sensors. The Journal of Physical Chemistry C, 2015. 119(11): p. 6398-6404.
    51. Kresse, G. and J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 1994. 49(20): p. 14251-14269.
    52. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 1997. 78(7): p. 1396-1396.
    53. Klimeš, J., D.R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids. Physical Review B, 2011. 83(19): p. 195131.
    54. Meyer, B. and D. Marx, First-principles study of CO adsorption on ZnO surfaces. Journal of Physics: Condensed Matter, 2003. 15(2): p. L89.
    55. Gong, X.-Q., et al., A Systematic Study of CO Oxidation on Metals and Metal Oxides:  Density Functional Theory Calculations. Journal of the American Chemical Society, 2004. 126(1): p. 8-9.
    56. West, P.S., et al., The Effect of CO and H Chemisorption on the Chemical Ordering of Bimetallic Clusters. The Journal of Physical Chemistry C, 2010. 114(46): p. 19678-19686.
    57. Tran, H.T.T. and M.J.S. Spencer, Zinc oxide for gas sensing of formaldehyde: Density functional theory modelling of the effect of nanostructure morphology and gas concentration on the chemisorption reaction. Materials Chemistry and Physics, 2017. 193: p. 274-284.
    58. Di Valentin, C., M. Rosa, and G. Pacchioni, Radical versus nucleophilic mechanism of formaldehyde polymerization catalyzed by (WO3)3 clusters on reduced or stoichiometric TiO2(110). J Am Chem Soc, 2012. 134(34): p. 14086-98.
    59. Kim, H.Y., et al., Oxidative Dehydrogenation of Methanol to Formaldehyde by Isolated Vanadium, Molybdenum, and Chromium Oxide Clusters Supported on Rutile TiO2(110). The Journal of Physical Chemistry C, 2009. 113(36): p. 16083-16093.
    60. Pham, T.L.M., et al., A DFT study of ethane activation on IrO 2 (110) surface by precursor-mediated mechanism. Applied Catalysis A: General, 2017. 541: p. 8-14.
    61. Rostami, Z., M. Pashangpour, and R. Moradi, DFT study on the chemical sensing properties of B24N24 nanocage toward formaldehyde. J Mol Graph Model, 2017. 72: p. 129-135.
    62. Shahbazi Kootenaei, A. and G. Ansari, B 36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis. Physics Letters A, 2016. 380(34): p. 2664-2668.
    63. Van Dornshuld, E., C.M. Holy, and G.S. Tschumper, Homogeneous and heterogeneous noncovalent dimers of formaldehyde and thioformaldehyde: structures, energetics, and vibrational frequencies. J Phys Chem A, 2014. 118(18): p. 3376-85.
    64. Wang, R., et al., Boron-Doped Carbon Nanotubes Serving as a Novel Chemical Sensor for Formaldehyde. The Journal of Physical Chemistry B, 2006. 110(37): p. 18267-18271.
    65. Wang, X. and K.M. Liew, Silicon Carbide Nanotubes Serving as a Highly Sensitive Gas Chemical Sensor for Formaldehyde. The Journal of Physical Chemistry C, 2011. 115(21): p. 10388-10393.
    66. Yao, Y., et al., Interaction between formaldehyde and luminescent MOF [Zn(NH(2)bdc)(bix)]n in the electronic excited state. J Phys Chem A, 2014. 118(32): p. 6191-6.
    67. Yue, J., X. Jiang, and A. Yu, Adsorption of the OH Group on SnO2(110) Oxygen Bridges: A Molecular Dynamics and Density Functional Theory Study. The Journal of Physical Chemistry C, 2013. 117(19): p. 9962-9969.
    68. Zhang, H.-p., et al., Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets. Applied Surface Science, 2013. 283: p. 559-565.
    69. Abraham, M.H. and J.A. Platts, Hydrogen Bond Structural Group Constants. The Journal of Organic Chemistry, 2001. 66(10): p. 3484-3491.
    70. Motobayashi, K., et al., Adsorption of Water Dimer on Platinum(111): Identification of the −OH•••Pt Hydrogen Bond. ACS Nano, 2014. 8(11): p. 11583-11590.
    71. Nelander, B., The Peroxy Radical as Hydrogen Bond Donor and Hydrogen Bond Acceptor. A Matrix Isolation Study. The Journal of Physical Chemistry A, 1997. 101(48): p. 9092-9096.
    72. Wendler, K., et al., Estimating the Hydrogen Bond Energy. The Journal of Physical Chemistry A, 2010. 114(35): p. 9529-9536.

    QR CODE