簡易檢索 / 詳目顯示

研究生: GOSSA DARE FAO
GOSSA DARE FAO
論文名稱: 氮化石墨烯和鉍基材料將 CO2 轉化為高附加值化合物的理論研究
Theoretical Investigation of the CO2 Conversion to Value-Added Compounds by Graphitic Nitride and Bismuth-Based Materials
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
Jyh-Chiang Jiang
林昇佃
Shawn D. Lin
蔡明剛
Ming-Kang (Brad) Tsai
俞聖法
Steve Sheng-Fa Yu
胡哲嘉
Chechia Hu
高橋開人
Kaito Takahashi
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 165
中文關鍵詞: 密度泛函理論CO2活化g-C3N4微動力學模擬磷硫共摻雜的 g-C3N4單斜晶Bi2O3
外文關鍵詞: DFT calculation, CO2 activation, g-C3N4, Microkinetic simulation, P, S co-doped g-C3N4, Monoclinic Bi2O3
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 各式工業、發電廠、交通工具和工廠所排放的二氧化碳量持續上升,成為暖化的原因之一,因而造成極地冰層融化、氣溫上升、沙漠化,甚至影響人們健康。諸多研究試圖緩和二氧化碳排放量,本研究的特色在於利用熱化學以及電化學方法還原二氧化碳。
    本篇論文的第一部分,密度泛函理論 (DFT)被用於CO2於摻雜金屬的瓦楞形石墨碳氮化物 (g-C3N4)之吸附、活化以及分解。g-C3N4和摻雜金屬間的協同作用能增加活性,二氧化碳得被活化。本研究探討g-C3N4表面摻雜鐵、鈷和鈀單顆原子以活化CO2時的催化劑結構、二氧化碳吸附樣態以及電子分布。吸附的CO2產生CO的過渡態表明CO2被活化之特性。研究結果顯示鐵摻雜 (Fe@g-C3N4)和鈷摻雜 (Co@g-C3N4)是良好的二氧化碳捕捉材料,特別是前者具有良好的活化CO2能力。此外,DFT能結合微動力學模擬 (microkinetic simulations),了解最佳一氧化碳的脫附溫度。
    第二部分中,探討以磷和硫共摻雜石墨碳氮化物 (PSCN),使用不同路易士酸鹼 (Lewis acidity and basicity)催化二氧化碳產生甘油 (CO2/GLY)的轉化過程,DFT揭露磷硫共摻雜能提供良好電子傳遞效率,藉此降低CO2/GLY的活化能。此外,本研究藉由CO2和甘油在PSCN和CN的反應位點和吸附能闡釋反應機制。結果顯示PSCN催化劑能為CO2/GLY轉化提供了一盞明燈。
    第三部分中,本論文使用未加工 (pristine)之單斜晶 (monoclinic)Bi2O3 (120)表面,藉由DFT研究CO2還原反應機制 (CO2RR mechanism),比較side-on、end-on和化學吸附 (chemisorbed)方式,其中以化學吸附的方式對二氧化碳活化有顯著地影響。然後,透過Bader charge、能量狀態密度 (density of state, DOS)以及電子密度差 (electron density difference, EDD)分析發現:Bi2O3 (120)有相當優秀地二氧化碳活化能力。DFT更揭露電化學CO2RR在Bi2O3 (120)表面能形成甲酸和甲醇,其中*CO¬2→*COOH極限電位 (limiting-potential)在有溶劑和沒有溶劑的情況下,其自由能能障 (free energy barrier)分別僅為0.86 eV和0.87 eV。在微動力學模擬中能證實DFT的結果,並藉由預測各產物脫附溫度做出最高選擇率的條件。本研究提供了清晰的未加工之單斜晶Bi2O3 (120)表面的CO2RR的反應機制,可用以產生HCOOH、CH3OH和CH4。
    最後,本研究再利用DFT進行未加工單斜晶BiOCl、有氯缺陷BiOCl以及去除表層氯的BiOCl (001)表面的CO2RR計算,以side-on和end-on的CO2吸附模式來測試哪種表面是最穩定的組態,用以做更進一步的電化學CO2RR研究。得知以side-on吸附於未加工BiOCl和去除表層氯的BiOCl (001)最穩定,而氯缺陷BiOCl (001)最適合用end-on吸附。透過DET計算,發現氯缺陷BiOCl在電化學CO2RR在產生HCOOH、CH3OH和CH4時有較低極限電位。因此本研究建議一套氯缺陷BiOCl (001)表面的CO2RR反應機制,用以產生HCOOH、CH3OH和CH4。


    The emissions of CO2 from various types of industries, power plants, vehicles, and many other factories are increasing and contributing to global warming. Global warming provokes the melting of polar ice, the increment of atmospheric temperature, the expansion of desertification, and the impact on human health. Even though there are different methods of mitigation of CO2, thermochemical and electrochemical CO2 reduction (CO2RR) reduction reaction is an interesting field of study for this work.
    In the first computational research work, density functional theory calculations (DFT) were used to study the adsorption, activation, and dissociation of CO2 on a decorated corrugated surface of graphitic carbon nitride (g-C3N4). Due to the synergistic effect between the metal and g-C3N4, the decoration of the surface enhances the catalytic activity of CO2 activation. On a decorated g-C3N4 surface with dispersed transition metal single-atoms of Fe, Co, and Pd, the optimization of catalyst structures, CO2 adsorption configurations, and electronic properties for CO2 activation were investigated. The transition states for direct dissociation to form CO were obtained from the adsorbed CO2 to reveal the properties of the activated carbon dioxide. Our calculations show that Fe@g-C3N4 and Co@g-C3N4 are good candidates for CO2 capture. Especially, the former has better catalytic activity for CO2 activation. Moreover, DFT studies were combined with microkinetic simulations to determine the optimal CO desorption reaction temperature.
    In the second research work, a P- and S-codoped graphitic-carbon nitride (PSCN) catalyst was used for the CO2 conversion process to improve its Lewis acidity and basicity and to study the carbon dioxide/glycerol (CO2/GLY) conversion. Density functional theory calculations (DFT) revealed that the efficient charge transfer resulting from P and S doping could enhance the catalytic activity for CO2/GLY conversion by lowering the activation barrier. In addition, the interaction site and adsorption energy for the adsorption of CO2 and GLY on PSCN and CN were investigated to elucidate the reaction mechanism. Our results indicate that PSCN could serve as a superior catalyst and shed new light on CO2/GLY conversion.
    In the third research work, the CO2RR mechanism on a pristine monoclinic Bi2O3 (120) surface was thoroughly investigated using density-functional theory (DFT) calculations. The CO2 adsorption modes of side-on, end-on, and chemisorbed were compared, with the chemisorbed species outperforming for CO2 activation. Furthermore, analyses of the density of states (DOS), the Bader charge, and electron density difference (EDD) strongly suggest that the Bi2O3 (120) surface has excellent activation for CO2 molecules. Notably, the DFT calculations showed that the electrochemical CO2RR over the Bi2O3 surface favors both formic acid and methanol in the *CO2 → *COOH reaction, acting as a limiting-potential step with calculated free energy changes of 0.86 eV and 0.87 eV with solvent and without solvent, respectively. The microkinetic simulation also supports the DFT result, showing the possibility of more selective production by predicting desorption temperatures. This research suggests a promising way for CO2RR mechanisms on pristine monoclinic Bi2O3 surfaces to produce HCOOH (formic acid), CH3OH (methanol) and CH4 (methane).
    Lastly, the CO2RR mechanism on a pristine monoclinic BiOCl, chlorine defected BiOCl and top layer chlorine removed BiOCl (001) surfaces were thoroughly investigated using DFT calculations. The CO2 adsorption modes of side-on and end-on were compared on each of the designed surfaces in order to choose the most stable adsorption configuration for further electrochemical CO2RR; side-on adsorption was more stable for the pristine BiOCl and top layer chlorine-removed BiOCl (001) surfaces, whereas end-on adsorption was more stable for the chlorine defected BiOCl surface. More importantly, the DFT calculations demonstrated that the electrochemical CO2RR over the chlorine defected BiOCl (001) surface favored the production of HCOOH, CH3OH, and CH4 species with lower limiting potential. This research suggests a promising way for CO2RR mechanisms on over the chlorine defected BiOCl (001) surface produce formic acid (HCOOH), methane (CH4). methanol (CH3OH).

    摘要 i ABSTRACT iii ACKNOWLEDGMENTS v List of Figures xi List of Tables xviii Chapter 1. Introduction 1 1.1. Background 1 1.2. Carbon dioxide (CO2) and glycerol 2 1.2.1 Carbon dioxide (CO2) molecule 2 1.2.2. Glycerol (GLY) molecule 4 1.3. Carbon materials (g-C3N4) 7 1.3.1. Graphitic nitride as a catalyst support material 7 1.3.2. Metal-decorated/doped graphitic nitride for CO2 conversion material 9 1.3.3. Non-metal doped graphitic nitride for CO2 conversion material 10 1.4. Bi2O3 and BiOCl 11 1.4.1. Bi2O3 (Bismuth (III) oxide) 11 1.4.2. BiOCl (Bismuth oxychloride) 12 1.5. Present study 13 Chapter 2. Theoretical Investigation of CO2 Conversion on Corrugated g-C3N4 Surface Decorated by Single-Atom of Fe, Co, and Pd 15 2.1. Introduction 15 2.2. Computational methods 16 2.3. Results and discussion 18 2.3.1. Structural modelling 18 2.3.2. CO2 activation on the decorated g-C3N4 surface 23 2.3.3. CO2 direct dissociation on the decorated g-C3N4 surface 27 2.3.4. Electronic structural analysis of CO2 adsorption 30 2.3.5. Microkinetic simulation 33 2.4. Conclusions 35 Chapter 3. The Enhanced Catalytic Activity of P, S-codoping for Glycerol Carboxylation with CO2 on g-C3N4 surface: A DFT Combined Microkinetic Study 36 3.1. Introduction 36 3.2. Computational methods 40 3.3. Results and discussion 42 3.3.1. Modeling of P, S co-doped g-C3N4 catalyst 42 3.3.2. CO2 and GLY adsorption on the pristine g-C3N4 surface 46 3.3.3. CO2 and glycerol adsorption on PSCN surface 48 3.3.4. Carboxylation on the CN and PSCN catalysts 54 3.3.5. Electronic property of the CO2 and glycerol co-adsorption 59 3.4. Conclusions 64 Chapter 4. Mechanistic Insights for Electroreduction of CO2 on Pristine Monoclinic -Bi2O3 (120) Surface 65 4.1. Introduction 65 4.2. Computational details and models 66 4.3. Results and discussion 68 4.3.1. Modeling of monoclinic α-Bi2O3 68 4.3.2. CO2 adsorption on pristine Bi2O3 71 4.3.3. Electronic Structure Analysis 75 4.3.4. Electrocatalytic CO2 reduction mechanism 77 4.3.5. Microkinetic modeling 85 4.4. Conclusions 87 Chapter 5. Theoretical Investigations for Electrochemical Reduction of CO2 into Chlorine Defected BiOCl (001) Surface 88 5.1. Introduction 88 5.2. Computational methods 89 5.3. Results and discussion 91 5.3.1. Bulk and surface modelling of BiOCl 91 5.3.2. CO2 adsorption on pristine BiOCl (001) surface 94 5.3.3. CO2 adsorption on defected BiOCl (001) surface 98 5.3.4. CO2 adsorption on top chlorine removed BiOCl (001) surface 101 5.3.5. Electrochemical CO2RR on pristine BiOCl (001) surface 104 5.3.6. Electrochemical CO2RR defected BiOCl (001) surface 108 5.3.7. Electrochemical CO2RR on the top layer chlorine removed BiOCl (001) surface 113 5.4. Conclusions 118 Chapter 6. Summary 119 References 122 APPENDIX: Theoretical Background 132

    1. Z. Sun, T. Ma, H. Tao, Q. Fan and B. Han, Chem, 2017, 3, 560-587.
    2. A. Nica, A. Popescu and D.-C. Ibanescu, Curr Trends Nat Sci, 2019, 8, 209-215.
    3. S. Erdogan, I. Okumus and A. E. Guzel, Environmental Science and Pollution Research, 2020, 27, 23655-23663.
    4. T. R. Anderson, E. Hawkins and P. D. Jones, Endeavour, 2016, 40, 178-187.
    5. S.-L. Lee-Müller, P. Massiani and A. Löfberg, CAPITA ERA-NET, 2014.
    6. S. Roy, A. Cherevotan and S. C. Peter, ACS Energy Letters, 2018, 3, 1938-1966.
    7. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang and Z. Jin, Advanced Science, 2018, 5, 1700275.
    8. L. Zhang, Z. J. Zhao and J. Gong, Angewandte Chemie International Edition, 2017, 56, 11326-11353.
    9. M. Khalil, Annual Review of Environment and Resources, 1999, 24, 645.
    10. G. A. Florides and P. Christodoulides, Environment International, 2009, 35, 390-401.
    11. S. Vaz Jr, A. P. R. de Souza and B. E. L. Baeta, Cleaner Engineering and Technology, 2022, 100456.
    12. H. Ritchie, M. Roser and P. Rosado, Our world in data, 2020.
    13. I. Y. López-Pacheco, L. I. Rodas-Zuluaga, S. Fuentes-Tristan, C. Castillo-Zacarías, J. E. Sosa-Hernández, D. Barceló, H. M. Iqbal and R. Parra-Saldívar, Journal of CO2 Utilization, 2021, 53, 101704.
    14. K. Jiang and P. Ashworth, Renewable and Sustainable Energy Reviews, 2021, 138, 110521.
    15. D. Y. Leung, G. Caramanna and M. M. Maroto-Valer, Renewable and Sustainable Energy Reviews, 2014, 39, 426-443.
    16. K. O. Yoro and M. O. Daramola, in Advances in Carbon Capture, Elsevier, 2020, pp. 3-28.
    17. P. J. Fischer and D. A. Tarr.
    18. Z. Y. BEN, H. SAMSUDIN and M. F. YHAYA, European Polymer Journal, 2022, 111377.
    19. H. Tan, A. A. Aziz and M. Aroua, Renewable and Sustainable Energy Reviews, 2013, 27, 118-127.
    20. N. Shaari, S. K. Kamarudin, R. Bahru, S. H. Osman and N. A. I. Md Ishak, International Journal of Energy Research, 2021, 45, 6644-6688.
    21. D. T. Johnson and K. A. Taconi, Environmental Progress, 2007, 26, 338-348.
    22. A. L. C. Minh, S. P. Samudrala and S. Bhattacharya, Sustainable Energy & Fuels, 2021.
    23. M. Ameen, M. Ahmad, M. Zafar, M. Munir, M. M. Abbas, S. Sultana, S. E. Elkhatib, M. E. M. Soudagar and M. Kalam, Sustainability, 2022, 14, 7032.
    24. C. Hu, C.-W. Chang, M. Yoshida and K.-H. Wang, Journal of Materials Chemistry A, 2021, 9, 7048-7058.
    25. C. Hu, M. Yoshida, H.-C. Chen, S. Tsunekawa, Y.-F. Lin and J.-H. Huang, Chemical Engineering Science, 2021, 235, 116451.
    26. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu and S. Jiang, Journal of Materials Science, 2021, 56, 173-200.
    27. Z. F. Huang, J. Wang, Y. Peng, C. Y. Jung, A. Fisher and X. Wang, Advanced Energy Materials, 2017, 7, 1700544.
    28. J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi and H. Tang, Carbon, 2014, 80, 213-221.
    29. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis and C. Trapalis, Applied Surface Science, 2015, 358, 278-286.
    30. L. Lin, H. Ou, Y. Zhang and X. Wang, Acs Catalysis, 2016, 6, 3921-3931.
    31. C. Ren, Y. Zhang, Y. Li, Y. Zhang, S. Huang, W. Lin and K. Ding, The Journal of Physical Chemistry C, 2019, 123, 17296-17305.
    32. J. Wang and S. Wang, Coordination Chemistry Reviews, 2022, 453, 214338.
    33. G. D. Fao and J.-C. Jiang, Molecular Catalysis, 2022, 526, 112402.
    34. P. Sharma, S. Kumar, O. Tomanec, M. Petr, J. Zhu Chen, J. T. Miller, R. S. Varma, M. B. Gawande and R. Zbořil, Small, 2021, 17, 2006478.
    35. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu and H. Wang, Applied Catalysis B: Environmental, 2017, 217, 388-406.
    36. Q. Lu, K. Eid, W. Li, A. M. Abdullah, G. Xu and R. S. Varma, Green Chemistry, 2021, 23, 5394-5428.
    37. C. H. Choi, L. Lin, S. Gim, S. Lee, H. Kim, X. Wang and W. Choi, ACS Catalysis, 2018, 8, 4241-4256.
    38. F. Wang, Y. Ye, Y. Cao and Y. Zhou, Applied Surface Science, 2019, 481, 604-610.
    39. S. Tonda, S. Kumar, S. Kandula and V. Shanker, Journal of Materials Chemistry A, 2014, 2, 6772-6780.
    40. W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong and S.-P. Chai, Chemical Reviews, 2016, 116, 7159-7329.
    41. M. Fan, J. Cui, J. Wu, R. Vajtai, D. Sun and P. M. Ajayan, Small, 2020, 16, 1906782.
    42. C. Hu, W.-Z. Hung, M.-S. Wang and P.-J. Lu, Carbon, 2018, 127, 374-383.
    43. E. Ranjbakhsh, M. Izadyar, A. Nakhaeipour and A. Habibi‐Yangjeh, International Journal of Quantum Chemistry, 2020, 120, e26388.
    44. Z. Zhu, Z. Liu, X. Tang, K. Reeti, P. Huo, J. W.-C. Wong and J. Zhao, Catalysis Science & Technology, 2021, 11, 1725-1736.
    45. P. Babu, S. Mohanty, B. Naik and K. Parida, ACS Applied Energy Materials, 2018, 1, 5936-5947.
    46. M. Arumugam, M. Tahir and P. Praserthdam, Chemosphere, 2022, 286, 131765.
    47. Z. Liu, X. Zhang, Z. Jiang, H.-S. Chen and P. Yang, International Journal of Hydrogen Energy, 2019, 44, 20042-20055.
    48. P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill New York, 2003.
    49. N. Sammes, G. Tompsett, H. Näfe and F. Aldinger, Journal of the European Ceramic Society, 1999, 19, 1801-1826.
    50. Y. Xu, L. Yan, X. Li and H. Xu, Scientific reports, 2019, 9, 1-9.
    51. S. Ivanov, R. Tellgren, H. Rundlo and V. Orlov, Powder Diffraction, 2001, 16, 227-230.
    52. Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su and X. Feng, Nature Catalysis, 2019, 2, 448-456.
    53. X. Li, N. Qian, L. Ji, X. Wu, J. Li, J. Huang, Y. Yan, D. Yang and H. Zhang, Nanoscale Advances, 2022, 4, 2288-2293.
    54. Y. Xin, Z. Wang, C. Yao, H. Shen and Y. Miao, ChemistrySelect, 2022, 7, e202201220.
    55. X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula and G. Guan, Renewable and Sustainable Energy Reviews, 2021, 143, 110952.
    56. J. Ko, B.-K. Kim and J. W. Han, The Journal of Physical Chemistry C, 2016, 120, 3438-3447.
    57. P. Li, F. Wang, S. Wei, X. Li and Y. Zhou, Physical Chemistry Chemical Physics, 2017, 19, 4405-4410.
    58. Z. Zheng and H. Wang, Chemical Physics Letters, 2019, 721, 33-37.
    59. S. Fu, X. Liu, J. Ran, Y. Jiao and S.-Z. Qiao, Applied Surface Science, 2021, 540, 148293.
    60. C. Ling, Q. Li, A. Du and J. Wang, ACS Applied Materials & Interfaces, 2018, 10, 36866-36872.
    61. G. Gao, Y. Jiao, E. R. Waclawik and A. Du, Journal of the American Chemical Society, 2016, 138, 6292-6297.
    62. E. S. Sanz-Perez, C. R. Murdock, S. A. Didas and C. W. Jones, Chemical reviews, 2016, 116, 11840-11876.
    63. M. H. Darvishnejad and A. Reisi‐Vanani, International Journal of Quantum Chemistry, 2020, 120, e26342.
    64. S. Samanta and R. Srivastava, Materials Advances, 2020, 1, 1506-1545.
    65. D. Cheng, F. R. Negreiros, E. Aprà and A. Fortunelli, ChemSusChem, 2013, 6, 944-965.
    66. C.-M. Lee, T. G. Senthamaraikannan, D. Y. Shin, J. A. Kwon and D.-H. Lim, Computational and Theoretical Chemistry, 2021, 1201, 113277.
    67. J. Niu, J. Ran, W. Qi, Z. Ou and W. He, International Journal of Hydrogen Energy, 2020.
    68. S. Tosoni, D. Spinnato and G. Pacchioni, The Journal of Physical Chemistry C, 2015, 119, 27594-27602.
    69. Z. Sun, H. Wang, Z. Wu and L. Wang, Catalysis Today, 2018, 300, 160-172.
    70. K. Wang, J. Fu and Y. Zheng, Applied Catalysis B: Environmental, 2019, 254, 270-282.
    71. X. Zhi, Y. Jiao, Y. Zheng and S. Z. Qiao, Small, 2019, 15, 1804224.
    72. J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang and X. Zhang, Nature Communications, 2020, 11, 1-8.
    73. M. D. Porosoff, X. Yang, J. A. Boscoboinik and J. G. Chen, Angewandte Chemie International Edition, 2014, 53, 6705-6709.
    74. A. Jangam, S. Das, N. Dewangan, P. Hongmanorom, W. M. Hui and S. Kawi, Catalysis Today, 2020, 358, 3-29.
    75. Y.-A. Zhu, D. Chen, X.-G. Zhou and W.-K. Yuan, Catalysis Today, 2009, 148, 260-267.
    76. X. Chen, Y. Liu and J. Wu, Molecular Catalysis, 2020, 483, 110716.
    77. K. D. Yang, Y. Ha, U. Sim, J. An, C. W. Lee, K. Jin, Y. Kim, J. Park, J. S. Hong and J. H. Lee, Advanced Functional Materials, 2016, 26, 233-242.
    78. J. Sirijaraensre and J. Limtrakul, Applied Surface Science, 2016, 364, 241-248.
    79. L. Zhai, C. Cui, Y. Zhao, X. Zhu, J. Han, H. Wang and Q. Ge, The Journal of Physical Chemistry C, 2017, 121, 16275-16282.
    80. S. Li, Y. Tian, L.-K. Yan and Z.-M. Su, Physical Chemistry Chemical Physics, 2021.
    81. B. Huang, Y. Wu, Y. Luo and N. Zhou, Chemical Physics Letters, 2020, 756, 137852.
    82. S. Chen, H. Yuan, S. I. Morozov, L. Ge, L. Li, L. Xu and W. A. Goddard III, The Journal of Physical Chemistry Letters, 2020, 11, 2541-2549.
    83. D. Chen, Z. Chen, Z. Lu, J. Tang, X. Zhang and C. V. Singh, Journal of Materials Chemistry A, 2020, 8, 21241-21254.
    84. P. Li, L. Liu, W. An, H. Wang, H. Guo, Y. Liang and W. Cui, Applied Catalysis B: Environmental, 2020, 266, 118618.
    85. J. H. Montoya, A. A. Peterson and J. K. Nørskov, ChemCatChem, 2013, 5, 737-742.
    86. Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec and S.-Z. Qiao, Journal of the American Chemical Society, 2017, 139, 18093-18100.
    87. H. Zhang, Y. Tang, Z. Liu, Z. Zhu, X. Tang and Y. Wang, Chemical Physics Letters, 2020, 751, 137467.
    88. T. Hussain, H. Vovusha, T. Kaewmaraya, A. Karton, V. Amornkitbamrung and R. Ahuja, Nanotechnology, 2018, 29, 415502.
    89. S. S. Deshpande, M. D. Deshpande, T. Hussain and R. Ahuja, Journal of CO2 Utilization, 2020, 35, 1-13.
    90. S. A. Tawfik, X. Cui, S. Ringer and C. Stampfl, RSC Advances, 2015, 5, 50975-50982.
    91. Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. H. Li, Y. Han, Y. Chen and S.-Z. Qiao, Journal of the American Chemical Society, 2017, 139, 3336-3339.
    92. K. Lakshmanan, W. H. Huang, S. A. Chala, B. W. Taklu, E. A. Moges, J. F. Lee, P. Y. Huang, Y. C. Lee, M. C. Tsai and W. N. Su, Advanced Functional Materials, 2022, 2109310.
    93. F. Pan, H. Zhang, K. Liu, D. Cullen, K. More, M. Wang, Z. Feng, G. Wang, G. Wu and Y. Li, ACS Catalysis, 2018, 8, 3116-3122.
    94. J. Zhang, W. Cai, F. X. Hu, H. Yang and B. Liu, Chemical Science, 2021, 12, 6800-6819.
    95. S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang and X. Guo, ACS nano, 2018, 12, 9441-9450.
    96. Q. Song, J. Li, L. Wang, L. Pang and H. Liu, Inorganic Chemistry, 2019, 58, 10802-10811.
    97. M. B. Gawande, P. Fornasiero and R. Zbořil, ACS Catalysis, 2020, 10, 2231-2259.
    98. P. E. Blöchl, Physical Review B, 1994, 50, 17953.
    99. G. Kresse and D. Joubert, Physical Review B, 1999, 59, 1758.
    100. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1996, 77, 3865.
    101. D. Ghosh, G. Periyasamy and S. K. Pati, The Journal of Physical Chemistry C, 2014, 118, 15487-15494.
    102. H. Niu, X. Wang, C. Shao, Y. Liu, Z. Zhang and Y. Guo, Journal of Materials Chemistry A, 2020, 8, 6555-6563.
    103. L. M. Azofra, D. R. MacFarlane and C. Sun, Physical Chemistry Chemical Physics, 2016, 18, 18507-18514.
    104. F. Fina, S. K. Callear, G. M. Carins and J. T. Irvine, Chemistry of Materials, 2015, 27, 2612-2618.
    105. J. Klimeš, D. R. Bowler and A. Michaelides, Journal of Physics: Condensed Matter, 2009, 22, 022201.
    106. J. Klimeš, D. R. Bowler and A. Michaelides, Physical Review B, 2011, 83, 195131.
    107. G. Henkelman, B. P. Uberuaga and H. Jónsson, The Journal of Chemical Physics, 2000, 113, 9901-9904.
    108. G. Mills, H. Jónsson and G. K. Schenter, Surface Science, 1995, 324, 305-337.
    109. G. Henkelman and H. Jónsson, The Journal of chemical physics, 2000, 113, 9978-9985.
    110. S. Nachimuthu, T.-R. Chen, C.-H. Yeh, L.-S. Hong and J.-C. Jiang, The Journal of Physical Chemistry Letters, 2021, 12, 4558-4568.
    111. K.-T. Wang, S. Nachimuthu and J.-C. Jiang, Physical Chemistry Chemical Physics, 2018, 20, 24201-24209.
    112. K. Homlamai, T. Maihom, S. Choomwattana, M. Sawangphruk and J. Limtrakul, Applied Surface Science, 2020, 499, 143928.
    113. X. Chen and R. Hu, International Journal of Hydrogen Energy, 2019, 44, 15409-15416.
    114. Q. Lu, K. Eid, W. Li, A. M. Abdullah, G. Xu and R. S. Varma, Green Chemistry, 2021.
    115. S. Nachimuthu, H.-J. Lai, Y.-C. Chen and J.-C. Jiang, Applied Surface Science, 2022, 577, 151938.
    116. C.-H. Yeh, B.-C. Ji, S. Nachimuthu and J.-C. Jiang, Applied Surface Science, 2021, 539, 148244.
    117. I. A. Filot, R. A. Van Santen and E. J. Hensen, Angewandte Chemie, 2014, 126, 12960-12964.
    118. Y. Xiang, V. r. Chitry, P. Liddicoat, P. Felfer, J. Cairney, S. Ringer and N. Kruse, Journal of the American Chemical Society, 2013, 135, 7114-7117.
    119. F. Zeng, C. Mebrahtu, X. Xi, L. Liao, J. Ren, J. Xie, H. J. Heeres and R. Palkovits, Applied Catalysis B: Environmental, 2021, 291, 120073.
    120. Y.-J. Liu, N. Cui, P.-L. Jia, X. Wang and W. Huang, ACS Sustainable Chemistry & Engineering, 2020, 8, 6634-6646.
    121. H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu and C. He, Journal of the American Chemical Society, 2019, 141, 12717-12723.
    122. P. De Caro, M. Bandres, M. Urrutigoïty, C. Cecutti and S. Thiebaud-Roux, Frontiers in Chemistry, 2019, 7, 308.
    123. A. K. Mishra, S. Schiavon, P. Wargocki and K. W. Tham, Indoor Air, 2021, 31, 1540-1552.
    124. M. Aresta, A. Dibenedetto and A. Angelini, Chemical Reviews, 2014, 114, 1709-1742.
    125. D. Liu, J.-C. Liu, W. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang and B. Liu, Nature Communications, 2019, 10, 1-8.
    126. N. Razali and J. McGregor, Catalysts, 2021, 11, 138.
    127. S. A. N. M. Rahim, C. S. Lee, F. Abnisa, M. K. Aroua, W. A. W. Daud, P. Cognet and Y. Pérès, Science of the Total Environment, 2020, 705, 135137.
    128. P. S. Fernández, C. A. Martins, M. E. Martins and G. A. Camara, Electrochimica Acta, 2013, 112, 686-691.
    129. H. Wang, W. Wang, S. Zaman, Y. Yu, Z. Wu, H. Liu and B. Y. Xia, Journal of Colloid and Interface Science, 2018, 530, 196-201.
    130. J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodriguez, C. Ramirez-Lopez, L. Lorenzo-Ibarreta, J. Torrecilla-Soria and M. C. Villaran-Velasco, Applied Catalysis A: General, 2009, 366, 315-324.
    131. J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramirez-Lopez and M. Belsué, Organic Process Research & Development, 2012, 16, 389-399.
    132. E. J. Lopes, A. P. Ribeiro and L. M. Martins, Catalysts, 2020, 10, 479.
    133. M. J. Climent, A. Corma, P. De Frutos, S. Iborra, M. Noy, A. Velty and P. Concepción, Journal of Catalysis, 2010, 269, 140-149.
    134. Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li and J. Shi, Journal of Materials Chemistry A, 2015, 3, 3862-3867.
    135. J. Liu, Y. Li, J. Zhang and D. He, Applied Catalysis A: General, 2016, 513, 9-18.
    136. H. Li, D. Gao, P. Gao, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, Catalysis Science & Technology, 2013, 3, 2801-2809.
    137. J. Zhang and D. He, Journal of Colloid and Interface Science, 2014, 419, 31-38.
    138. N. Razali, M. Conte and J. McGregor, Catalysis Letters, 2019, 149, 1403-1414.
    139. B. Petrovic, M. Gorbounov and S. M. Soltani, Microporous and Mesoporous Materials, 2021, 312, 110751.
    140. S. Kim, G. Singh, C. Sathish, P. Panigrahi, R. Daiyan, X. Lu, Y. Sugi, I. Y. Kim and A. Vinu, Chemistry–An Asian Journal, 2021, 16, 3999-4005.
    141. G. Shi, L. Yang, Z. Liu, X. Chen, J. Zhou and Y. Yu, Applied Surface Science, 2018, 427, 1165-1173.
    142. Q. Yang, C. Chen, Q. Zhang, Z. Zhang and X. Fang, Carbon, 2020, 164, 337-348.
    143. S. Hu, A. Yu and R. Lu, RSC Advances, 2021, 11, 15701-15709.
    144. Y. Li, H. Liu, L. Ma, J. Liu and D. He, Catalysis Science & Technology, 2021, 11, 1007-1013.
    145. N. Kulal, R. Vetrivel, N. Ganesh Krishna and G. V. Shanbhag, ACS Applied Nano Materials, 2021, 4, 4388-4397.
    146. Y.-T. Lin, J. Yang and C.-Y. Mou, ACS Sustainable Chemistry & Engineering, 2021, 9, 3571-3579.
    147. J. Liu, Y. Li, H. Liu and D. He, Applied Catalysis B: Environmental, 2019, 244, 836-843.
    148. G. D. Fao, H. N. Catherine, C.-H. Huang, Y.-L. Lee, J.-C. Jiang and C. Hu, Carbon, 2023, 201, 129-140.
    149. C. Sathish, S. Premkumar, X. Chu, X. Yu, M. B. Breese, M. Al‐Abri, A. a. H. Al‐Muhtaseb, A. Karakoti, J. Yi and A. Vinu, Angewandte Chemie International Edition, 2021, 60, 21242-21249.
    150. W. Niu and Y. Yang, ACS Energy Letters, 2018, 3, 2796-2815.
    151. J. Duan, S. Chen, M. Jaroniec and S. Z. Qiao, ACS nano, 2015, 9, 931-940.
    152. Y.-C. Chu, T.-J. Lin, Y.-R. Lin, W.-L. Chiu, B.-S. Nguyen and C. Hu, Carbon, 2020, 169, 338-348.
    153. Z. Chen, J. Zhao, C. R. Cabrera and Z. Chen, Small Methods, 2018, 3.
    154. L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong, Y. Zhang and Y. Bi, Angew Chem Int Ed Engl, 2020, 59, 6224-6229.
    155. X. Huang, Y. Xia, Y. Cao, X. Zheng, H. Pan, J. Zhu, C. Ma, H. Wang, J. Li, R. You, S. Wei, W. Huang and J. Lu, Nano Research, 2017, 10, 1302-1312.
    156. J. Zhang and L. Dai, ACS Catalysis, 2015, 5, 7244-7253.
    157. T. Kesavan, T. Partheeban, M. Vivekanantha, N. Prabu, M. Kundu, P. Selvarajan, S. Umapathy, A. Vinu and M. Sasidharan, ACS Applied Materials & Interfaces, 2020, 12, 24007-24018.
    158. E. Cruz-Silva, F. Lopez-Urias, E. Munoz-Sandoval, B. G. Sumpter, H. Terrones, J.-C. Charlier, V. Meunier and M. Terrones, Nanoscale, 2011, 3, 1008-1013.
    159. J. Su, P. Geng, X. Li, Q. Zhao, X. Quan and G. Chen, Nanoscale, 2015, 7, 16282-16289.
    160. Y. Zhang and M. Antonietti, Chemistry–An Asian Journal, 2010, 5, 1307-1311.
    161. G. Chen and S.-P. Gao, Chinese Physics B, 2012, 21, 107101.
    162. S. Patnaik, D. P. Sahoo and K. Parida, Carbon, 2021, 172, 682-711.
    163. K. Preuss, A. M. Siwoniku, C. I. Bucur and M. M. Titirici, ChemPlusChem, 2019, 84, 457-464.
    164. S. Yuan, Q. Zhang, B. Xu, S. Liu, J. Wang, J. Xie, M. Zhang and T. Ohno, Catalysis Science & Technology, 2017, 7, 1826-1830.
    165. F. Yi, H. Gan, H. Jin, W. Zhao, K. Zhang, H. Jin, H. Zhang, Y. Qian and J. Ma, Separation and Purification Technology, 2020, 233, 115997.
    166. K. Wu, D. Chen, J. Fang, S. Wu, F. Yang, X. Zhu and Z. Fang, Applied Surface Science, 2018, 462, 991-1001.
    167. D. Long, W. Chen, S. Zheng, X. Rao and Y. Zhang, Industrial & Engineering Chemistry Research, 2020, 59, 4549-4556.
    168. H. Ma, Y. Li, S. Li and N. Liu, Applied Surface Science, 2015, 357, 131-138.
    169. A. Maiti and S. K. Srivastava, Journal of Materials Chemistry A, 2018, 6, 19712-19726.
    170. J. Xiao, Y. Wang, T. C. Zhang and S. Yuan, Applied Surface Science, 2021, 562, 150128.
    171. N. Sharma, B. Ugale, S. Kumar and K. Kailasam, Frontiers in chemistry, 2021, 9.
    172. H.-L. Peng, F.-Y. Zhong, J.-B. Zhang, J.-Y. Zhang, P.-K. Wu, K. Huang, J.-P. Fan and L.-L. Jiang, Industrial & Engineering Chemistry Research, 2018, 57, 11031-11038.
    173. M. A. Wahab, J. Na, M. K. Masud, M. S. A. Hossain, A. A. Alothman and A. Abdala, Journal of Hazardous Materials, 2021, 408, 124843.
    174. D. Coll, F. Delbecq, Y. Aray and P. Sautet, Physical Chemistry Chemical Physics, 2011, 13, 1448-1456.
    175. N. Guo, S. Caratzoulas, D. J. Doren, S. I. Sandler and D. G. Vlachos, Energy & Environmental Science, 2012, 5, 6703-6716.
    176. P. Tereshchuk, A. S. Chaves and J. L. Da Silva, The Journal of Physical Chemistry C, 2014, 118, 15251-15259.
    177. B. Liu and J. Greeley, Physical Chemistry Chemical Physics, 2013, 15, 6475-6485.
    178. G. Kresse and J. Furthmüller, Computational materials science, 1996, 6, 15-50.
    179. G. Kresse and J. Furthmüller, Physical Review B, 1996, 54, 11169.
    180. J. Klimeš, D. R. Bowler and A. Michaelides, Physical Review B, 2011, 83, 195131.
    181. H. J. Monkhorst and J. D. Pack, Physical Review B, 1976, 13, 5188.
    182. J. Zhao, M. Ji, H. Chen, Y.-X. Weng, J. Zhong, Y. Li, S. Wang, Z. Chen, J. Xia and H. Li, Applied Catalysis B: Environmental, 2022, 307, 121162.
    183. X. Chen, X. Zhao, Z. Kong, W.-J. Ong and N. Li, Journal of Materials Chemistry A, 2018, 6, 21941-21948.
    184. Y. Liang, C. Long, J. Li, H. Jin, B. Huang and Y. Dai, ACS Applied Energy Materials, 2018, 1, 5394-5401.
    185. H. Liu, H. Li, J. Lu, S. Zeng, M. Wang, N. Luo, S. Xu and F. Wang, ACS Catalysis, 2018, 8, 4761-4771.
    186. W. Tang, E. Sanville and G. Henkelman, Journal of Physics: Condensed Matter, 2009, 21, 084204.
    187. S.-J. Park and K.-D. Kim, Journal of colloid and Interface Science, 1999, 212, 186-189.
    188. F. Mofidi and A. Reisi-Vanani, Applied Surface Science, 2020, 507, 145134.
    189. I. O. Furtado, T. C. dos Santos, L. F. Vasconcelos, L. T. Costa, R. G. Fiorot, C. M. Ronconi and J. W. d. M. Carneiro, Chemical Engineering Journal, 2021, 408, 128002.
    190. Q. Wan, J. Li, R. Jiang and S. Lin, Physical Chemistry Chemical Physics, 2021, 23, 24349-24356.
    191. H. Mikulčić, I. R. Skov, D. F. Dominković, S. R. W. Alwi, Z. A. Manan, R. Tan, N. Duić, S. N. H. Mohamad and X. Wang, Renewable and Sustainable Energy Reviews, 2019, 114, 109338.
    192. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li, Chemical Reviews, 2014, 114, 9987-10043.
    193. P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu and J. L. Luo, Small, 2022, 18, 2105682.
    194. J. M. Ali, A. M. Mohammed and Y. S. Mekonnen, Journal of Computational Chemistry, 2022, 43, 961-971.
    195. S. She, X. Zhang, X. Wu, J. Li and G. Zhang, Journal of Colloid and Interface Science, 2021, 604, 122-130.
    196. S. Wang, G. Li, L. Chen, Z. Li, Z. Wu, X. Kong, T. Wang, F. He, P. Yang and Z. Liu, Functional Materials Letters, 2021, 14, 2130017.
    197. S.-Q. Liu, M.-R. Gao, R.-F. Feng, L. Gong, H. Zeng and J.-L. Luo, ACS Catalysis, 2021, 11, 7604-7612.
    198. L. Li, D.-K. Ma, F. Qi, W. Chen and S. Huang, Electrochimica Acta, 2019, 298, 580-586.
    199. M. T. Tang, H. Peng, P. S. Lamoureux, M. Bajdich and F. Abild-Pedersen, Applied Catalysis B: Environmental, 2020, 279, 119384.
    200. D. Y. Jo, H. C. Ham and K.-Y. Lee, Applied Surface Science, 2020, 527, 146857.
    201. Z. Li, D. He, X. Yan, S. Dai, S. Younan, Z. Ke, X. Pan, X. Xiao, H. Wu and J. Gu, Angewandte Chemie, 2020, 132, 18731-18736.
    202. Y. Li, Z. Tian and L. Chen, The Journal of Physical Chemistry C, 2021, 125, 21381-21389.
    203. T. M. Suzuki, T. Ishizaki, S. Kosaka, N. Takahashi, N. Isomura, J. Seki, Y. Matsuoka, K. Oh-Ishi, A. Oshima and K. Kitazumi, Chemical Communications, 2020, 56, 15008-15011.
    204. Y. Xu, C. Li, Y. Xiao, C. Wu, Y. Li, Y. Li, J. Han, Q. Liu and J. He, ACS Applied Materials & Interfaces, 2022, 14, 11567-11574.
    205. N. Kumar, N. Seriani and R. Gebauer, Physical Chemistry Chemical Physics, 2020, 22, 10819-10827.
    206. B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang, P. Wang, J. Zhao, Y. Guo, J. Sun and C. Zhao, ACS Applied Materials & Interfaces, 2021, 13, 39165-39177.
    207. F.-Y. Gao, Z.-Z. Wu and M.-R. Gao, Energy & Fuels, 2021, 35, 12869-12883.
    208. X. Shao, X. Zhang, Y. Liu, J. Qiao, X.-D. Zhou, N. Xu, J. L. Malcombe, J. Yi and J. Zhang, Journal of Materials Chemistry A, 2021, 9, 2526-2559.
    209. X. Wang, Y. Zou, Y. Zhang, B. Marchetti, Y. Liu, J. Yi, X.-D. Zhou and J. Zhang, Journal of Colloid and Interface Science, 2022, 626, 836-847.
    210. S. S. A. Shah, T. Najam, M. Wen, S.-Q. Zang, A. Waseem and H.-L. Jiang, Small Structures, 2022, 3, 2100090.
    211. T. Asset, S. T. Garcia, S. Herrera, N. Andersen, Y. Chen, E. J. Peterson, I. Matanovic, K. Artyushkova, J. Lee and S. D. Minteer, ACS Catalysis, 2019, 9, 7668-7678.
    212. C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi, M. Ren, J. Sha, J. Zhong, K. Nie and A. S. Jalilov, Advanced Energy Materials, 2018, 8, 1703487.
    213. X. An, S. Li, A. Yoshida, T. Yu, Z. Wang, X. Hao, A. Abudula and G. Guan, ACS Applied Materials & Interfaces, 2019, 11, 42114-42122.
    214. N. Kumari, N. Sinha, M. A. Haider and S. Basu, Electrochimica Acta, 2015, 177, 21-29.
    215. S. Lu, Y. Zhang, F. Lou and Z. Yu, Journal of CO2 Utilization, 2022, 62, 102069.
    216. C. Cao, D. D. Ma, J. Jia, Q. Xu, X. T. Wu and Q. L. Zhu, Advanced Materials, 2021, 33, 2008631.
    217. H. Liu, H. Wang, Q. Song, K. Küster, U. Starke, P. A. van Aken and E. Klemm, Angewandte Chemie International Edition, 2022, 61, e202117058.
    218. Y. Li, F. Yang and Y. Yu, Applied Surface Science, 2015, 358, 449-456.
    219. G. Guenther and O. Guillon, Journal of Materials Research, 2014, 29, 1383-1392.
    220. A. M. Abu-Dief and W. Mohamed, Materials Research Express, 2017, 4, 035039.
    221. G. Kresse and J. Hafner, Physical Review B, 1994, 49, 14251.
    222. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. Arias and R. G. Hennig, The Journal of Chemical Physics, 2014, 140, 084106.
    223. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.
    224. G. Malmros, Acta Chem. Scand, 1970, 24, 384.
    225. A. Matsumoto, Y. Koyama and I. Tanaka, Physical Review B, 2010, 81, 094117.
    226. H. Oudghiri-Hassani, S. Rakass, F. T. Al Wadaani, K. J. Al-Ghamdi, A. Omer, M. Messali and M. Abboudi, Journal of Taibah University for Science, 2015, 9, 508-512.
    227. P. Hirunsit, W. Soodsawang and J. Limtrakul, The Journal of Physical Chemistry C, 2015, 119, 8238-8249.
    228. P. Brimley, H. Almajed, Y. Alsunni, A. W. Alherz, Z. J. Bare, W. A. Smith and C. B. Musgrave, ACS Catalysis, 2022, 12, 10161-10171.
    229. X. Feng, H. Zou, R. Zheng, W. Wei, R. Wang, W. Zou, G. Lim, J. Hong, L. Duan and H. Chen, Nano Letters, 2022, 22, 1656-1664.
    230. J. Wu, X. Yu, H. He, C. Yang, D. Xia, L. Wang, J. Huang, N. Zhao, F. Tang and L. Deng, Industrial & Engineering Chemistry Research, 2022, 61, 12383-12391.
    231. Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu and J. Lu, Nature communications, 2019, 10, 1-10.
    232. Y. Jia, M. Lin, Z. Tian and J. Gao, Journal of Catalysis, 2022, 413, 1077-1088.
    233. F. Pan and Y. Yang, Energy & Environmental Science, 2020, 13, 2275-2309.
    234. S. Jin, Z. Hao, K. Zhang, Z. Yan and J. Chen, Angewandte Chemie, 2021, 133, 20795-20816.
    235. K. Williams, N. Corbin, J. Zeng, N. Lazouski, D.-T. Yang and K. Manthiram, Sustainable Energy & Fuels, 2019, 3, 1225-1232.
    236. X. Zhang, S.-X. Guo, K. A. Gandionco, A. M. Bond and J. Zhang, Materials Today Advances, 2020, 7, 100074.
    237. G. Zhang, X. Qin, C. Deng, W.-B. Cai and K. Jiang, Advanced Sensor and Energy Materials, 2022, 100007.
    238. L. Fan, C. Xia, P. Zhu, Y. Lu and H. Wang, Nature Communications, 2020, 11, 1-9.
    239. Z. L. Wang, J. M. Yan, Y. Ping, H. L. Wang, W. T. Zheng and Q. Jiang, Angewandte Chemie, 2013, 125, 4502-4505.
    240. B. Jiang, X.-G. Zhang, K. Jiang, D.-Y. Wu and W.-B. Cai, Journal of the American Chemical Society, 2018, 140, 2880-2889.
    241. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov and T. F. Jaramillo, ACS Catalysis, 2017, 7, 4822-4827.
    242. S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang and X. W. Lou, Angewandte Chemie International Edition, 2019, 58, 8499-8503.
    243. W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma and J. Liu, Nano Energy, 2018, 53, 808-816.
    244. X. Kou, Y. Zhang, D. Niu, X. Han, L. Ma and J. Xu, Electrochimica Acta, 2022, 141256.
    245. W. Ni, C. Li, X. Zang, M. Xu, S. Huo, M. Liu, Z. Yang and Y.-M. Yan, Applied Catalysis B: Environmental, 2019, 259, 118044.
    246. Y. Pei, H. Zhong and F. Jin, Energy Science & Engineering, 2021, 9, 1012-1032.
    247. Z. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai and H. Zhu, Acs Catalysis, 2016, 6, 6255-6264.
    248. Y. Qiu, J. Du, W. Dong, C. Dai and C. Tao, Journal of CO2 Utilization, 2017, 20, 328-335.
    249. Y. Zhou, P. Yan, J. Jia, S. Zhang, X. Zheng, L. Zhang, B. Zhang, J. Chen, W. Hao and G. Chen, Journal of Materials Chemistry A, 2020, 8, 13320-13327.
    250. K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu and J. Yu, ACS Catalysis, 2019, 10, 358-364.
    251. P. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu and G. Zhang, Nanoscale, 2019, 11, 7805-7812.
    252. Q. Li, X. Zhang, X. Zhou, Q. Li, H. Wang, J. Yi, Y. Liu and J. Zhang, Journal of Co2 Utilization, 2020, 37, 106-112.
    253. X. An, S. Li, A. Yoshida, Z. Wang, X. Hao, A. Abudula and G. Guan, ACS Sustainable Chemistry & Engineering, 2019, 7, 9360-9368.
    254. S. Wu, J. Xiong, J. Sun, Z. D. Hood, W. Zeng, Z. Yang, L. Gu, X. Zhang and S.-Z. Yang, ACS applied materials & interfaces, 2017, 9, 16620-16626.
    255. Z. Yang, D. Wang, Y. Zhang, Z. Feng, L. Liu and W. Wang, ACS Applied Materials & Interfaces, 2020, 12, 8604-8613.
    256. R. Li, Q. Luan, C. Dong, W. Dong, W. Tang, G. Wang and Y. Lu, Applied Catalysis B: Environmental, 2021, 286, 119832.
    257. J. Jin, Y. Wang and T. He, RSC advances, 2015, 5, 100244-100250.
    258. F. Duo, Y. Wang, X. Mao, X. Zhang, Y. Wang and C. Fan, Applied Surface Science, 2015, 340, 35-42.
    259. D. Zhang, C. Su, S. Yao, H. Li, X. Pu and Y. Geng, Journal of Physics and Chemistry of Solids, 2020, 147, 109630.
    260. S. Ning, L. Ding, Z. Lin, Q. Lin, H. Zhang, H. Lin, J. Long and X. Wang, Applied Catalysis B: Environmental, 2016, 185, 203-212.
    261. H. Zhang, Y. Ma, F. Quan, J. Huang, F. Jia and L. Zhang, Electrochemistry communications, 2014, 46, 63-66.
    262. P.-A. Hsieh, P.-J. Chen, L.-M. Lyu, S.-Y. Chen, M.-C. Tseng, M.-Y. Chung, W.-H. Chiang, J.-L. Chen and C.-H. Kuo, ACS Applied Materials & Interfaces, 2021, 13, 58799-58808.
    263. A. Biswas, R. Das, C. Dey, R. Banerjee and P. Poddar, Crystal growth & design, 2014, 14, 236-239.

    無法下載圖示 全文公開日期 2025/01/17 (校內網路)
    全文公開日期 2025/01/17 (校外網路)
    全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE