簡易檢索 / 詳目顯示

研究生: 胡智勛
CHIH-HSUN HU
論文名稱: 剪切增稠流體改質瀝青膠泥與瀝青混合料之性能分析
Performance Evaluation of Asphalt Binders and Asphalt Mixtures Modified with Shear Thickening Fluid
指導教授: 廖敏志
Min-Chih Liao
口試委員: 林彥宇
陳建旭
黃建維
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 100
中文關鍵詞: 剪切增稠流體頻率掃描試驗黏結料降伏能量試驗多重應力潛變恢復試驗間接張力開裂試驗間接張力車轍試驗
外文關鍵詞: Shear Thickening Fluids, Frequency Sweep Tests, Binder Yield Energy Tests, Linear Amplitude Sweep Tests, Multiple Stress Creep Recovery Tests, Indirect Tensile Cracking Tests, Indirect Tensile Rutting Tests
相關次數: 點閱:579下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

瀝青膠泥具有非常複雜之化學結構,其可表現出黏性與彈性行為,對於這些特性,氣候溫度和交通承載量是關鍵之因素,瀝青路面於生命週期內提前損壞之原因與瀝青混合料暴露於低溫或高溫下之性能有關,包含車轍變形與疲勞開裂等;為了改善瀝青膠泥之性能,本研究製作不同二氧化矽濃度之剪切增稠流體(Shear ThickeningFluid, STF),摻入基底瀝青膠泥改質並進行疲勞性能及車轍性能之相關研究,並且製作瀝青混合料進行力學試驗,驗證改質後瀝青膠泥之性能;本研究以基底瀝青膠泥AC20 之重量百分比做為STF 改質劑之添加比例(10%、20%及30%),分別進行基本物性試驗及流變性能試驗;基本物性試驗採用軟化點試驗及黏滯度試驗,流變性能試驗採用頻率掃描試驗、黏結料降伏能量試驗、線性振幅掃描試驗、Glower-Rowe 試驗及多重應力潛變恢復試驗;瀝青混合料採用間接張力開裂試驗及間接張力車轍試驗;透過試驗數據分析,STF 材料能有效減低AC20 之溫度敏感性且改變瀝青膠泥之黏彈性能;STF 高溫狀態結晶化提升AC20 之抵抗永久變形及抵抗剪切變形能力,於低溫能透過稀釋瀝青膠泥之硬化程度及奈米二氧化矽填充微小間距與不連續性,使瀝青膠泥之整體結構性更加完善,進而提升抵抗疲勞開裂能力;此外,本研究還評估STF 材料對於密級配熱拌瀝青混合料抵抗永久變形與疲勞開裂之影響,結果顯示,添加STF 材料顯著提高瀝青混合料之抗車轍性能,適量添加亦能提高抗疲勞開裂性能,根據添加量不同而有所變化;綜觀來說,加入STF 材料能有效改善基底瀝青膠泥AC20 之抗車轍性能與抗疲勞性能,其中以添加10%STF 為最適當添加量,其能在高溫狀態提升抗車轍性能及低溫狀態提升抗疲勞性能,成功達到雙向性能提升之目標。


Asphalt binders have a highly complex chemical structure that exhibits both viscous and elastic behavior. The key factors affecting these properties are climate temperature and traffic load. Premature damage to asphalt pavements during their lifecycle is related to the performance of asphalt mixtures exposed to low or high temperatures, including rutting
deformation and fatigue cracking. To improve the performance of asphalt mastic, this study produced shear thickening fluids (STF) with varying concentrations of silica and incorporated them into base asphalt binder for modification. The study conducted relevant research on fatigue performance and rutting performance and also produced asphalt mixtures for mechanical testing to verify the performance of the modified asphalt binders. In this study, the STF modifier was added to base asphalt binder AC20 in weight percentages of 10%, 20%, and 30%, and subjected to basic physical property tests and rheological
performance tests. The basic physical property tests included the softening point test and viscosity test, while the rheological performance tests included frequency sweep tests, binder yield energy tests (BYET), linear amplitude sweep tests (LAS), Glower-Rowe tests, and multiple stress creep recovery tests (MSCR). The asphalt mixtures were subjected to indirect tensile cracking tests (IDEAL-CT) and indirect tensile rutting tests (IDEAL-RT).
Through analysis of the test data, STF materials were found to effectively reduce the temperature sensitivity of AC20 and alter the viscoelastic properties of the asphalt mastic.
The crystallization of STF at high temperatures enhanced AC20’s resistance to permanent deformation and shear deformation, while at low temperatures, it diluted the hardening
degree of the asphalt binder and the nano-silica filled micro-gaps and discontinuities, resulting in a more complete overall structure of the asphalt binder, thus improving fatigue cracking resistance. Additionally, this study evaluated the impact of STF materials on the resistance to permanent deformation and fatigue cracking of dense-graded hot-mix asphalt mixtures. The results showed that adding STF materials significantly improved the rutting resistance of asphalt mixtures, and appropriate additions also enhanced fatigue cracking resistance, varying with the amount added. Overall, the inclusion of STF materials effectively improved the rutting resistance and fatigue performance of base asphalt binder AC20, with 10% STF addition being the optimal amount, achieving the goal of dual performance enhancement by improving rutting resistance at high temperatures and fatigue resistance at low temperatures.

摘要 III Abstract IV 誌謝 VI 專有名詞參考表 VII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究範圍 3 第二章 文獻回顧 4 2.1剪切稀化流體 4 2.2剪切增稠流體 5 2.2.1材料之行為 6 2.2.2材料之種類 7 2.2.3材料之製造流程 7 2.2.4材料之機械理論 8 2.3剪切增稠改質瀝青膠泥 9 2.3.1 STF對瀝青膠泥影響 9 2.3.2 STF對瀝青混合料的影響 13 2.4瀝青黏結料降伏能量試驗 14 第三章 研究計畫 16 3.1試驗範圍 16 3.2試驗流程 16 3.3試驗材料 18 3.3.1氣相式二氧化矽 18 3.3.2乙二醇 19 3.3.3瀝青膠泥 20 3.3.4天然粒料 20 3.4剪切增稠流體製作方式 21 3.5 STF改質瀝青膠泥製作方式 22 3.6剪切增稠流體試驗方式 23 3.6.1黏度試驗 23 3.7瀝青膠泥試驗方式 26 3.7.1軟化點試驗 26 3.7.2黏滯度試驗 27 3.7.3頻率掃描試驗 29 3.7.4黏結料降伏能量試驗(Method A) 30 3.7.5線性振幅掃描試驗 31 3.7.6 Glover-Rowe試驗 34 3.7.7多重應力潛變恢復試驗 35 3.8粒料試驗方式 37 3.8.1篩分析試驗 37 3.8.2粗粒料比重及吸水率試驗 38 3.8.3細粒料比重及吸水率試驗 40 3.9瀝青混合料試驗方式 42 3.9.1Superpave 配比設計試驗 42 3.9.2最大理論比重試驗 45 3.9.3間接張力開裂試驗(IDEAL-CT) 47 3.9.4間接張力車轍試驗(IDEAL-RT) 50 第四章 結果與分析 53 4.1剪切增稠流體 53 4.2瀝青膠泥 54 4.2.1基本物性試驗 54 4.2.1.1 軟化點試驗 54 4.2.1.2 黏滯度試驗 55 4.2.2流變性能試驗 57 4.2.2.1 頻率掃描試驗 57 4.2.2.2 黏結料降伏能量試驗(Method A) 67 4.2.2.3 線性振幅掃描試驗 70 4.2.2.4 Glover-Rowe 試驗 72 4.2.2.5 多重應力潛變恢復試驗 73 4.3天然粒料 76 4.4瀝青混合料 78 4.4.1Superpave配比設計 78 4.4.2間接張力開裂試驗 79 4.4.3間接張力車轍試驗 81 4.5績效試驗相關性比較 84 4.5.1瀝青膠泥試驗相關性比較 84 4.5.1.1 頻率掃描試驗與黏結料降伏能量試驗 84 4.5.1.2 頻率掃描試驗與線性振幅掃描試驗 85 4.5.1.3 頻率掃描試驗與多重應力潛變恢復試驗 86 4.5.1.4 黏結料降伏能量試驗與線性振幅掃描試驗 87 4.5.2瀝青混合料試驗相關性比較 88 4.5.2.1 間接張力開裂試驗與間接張力車轍試驗 88 4.5.3瀝青膠泥試驗與瀝青混合料試驗相關性比較 89 4.5.3.1 頻率掃描試驗與間接張力開裂試驗 89 4.5.3.2 黏結料降伏能量試驗與間接張力開裂試驗 90 4.5.3.3 線性振幅掃描試驗與間接張力開裂試驗 91 4.5.3.4 頻率掃描試驗與間接張力車轍試驗 92 4.5.3.5 多重應力潛變恢復試驗與間接張力車轍試驗 93 第五章 結論與建議 94 5.1結論 94 5.2建議 95 參考文獻 96

AASHTO-R30-02. (2015). Mixture Conditioning of Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials.
AASHTO-T312-15. (2018). Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor. American Association of State Highway and Transportation Officials.
AASHTO-T315-12. (2016). Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials.
AASHTO-T350-14. (2018). Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials.
AASHTO-T391-20. (2021). Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. American Association of State Highway and Transportation Officials.
AASHTO-TP101-12. (2018). Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. American Association of State Highway and Transportation Officials.
AASHTO-TP123-16. (2018). Standard Method of Test for Measuring Asphalt Binder Yield Energy and Elastic Recovery Using the Dynamic Shear Rheometer. American Association of State Highway and Transportation Officials.
AI-MS2. (2014). MS-2 Asphalt Mix Design Methods. Asphalt Institute.
ASTM-C127. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing and Materials.
ASTM-C128. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. American Society for Testing and Materials.
ASTM-C136. (2006). StandardTest Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials.
ASTM-D36/D36M. (2014). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). American Society for Testing and Materials.
ASTM-D2041/D2041M. (2019). Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures. American Society for Testing and Materials.
ASTM-D3381. (2018). Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction. American Society for Testing and Materials.
ASTM-D4402/D4402M. (2023). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. American Society for Testing and Materials.
ASTM-D6925. (2015). Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor. American Society for Testing and Materials.
ASTM-D8225. (2019). Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature. American Society for Testing and Materials.
ASTM-D8360. (2022). Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test. American Society for Testing and Materials.
Bahia, H., Tabatabaee, H. A., Mandal, T., & Faheem, A. (2013). Field evaluation of Wisconsin modified binder selection guidelines-Phase II. Wisconsin Highway Research Program.
Barnes, H. (1989). Shear‐thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. Journal of Rheology, 33(2), 329-366.
Bodnár, T., & Sequeira, A. (2022). Analysis of the shear-thinning viscosity behavior of the Johnson–Segalman viscoelastic fluids. Fluids, 7(1), 36.
Chen, H., Zhang, Y., & Bahia, H. U. (2021). The role of binders in mixture cracking resistance measured by ideal-CT test. International Journal of Fatigue, 142, 105947.
Galindo-Rosales, F., Rubio-Hernandez, F., & Angermann, L. (2010). Numerical simulation in steady flow of non-Newtonian fluids in pipes with circular cross-section. Numerical Simulations–Examples and Applications in Computational Fluid Dynamics, 3-23.
Gurnon, A. K., & Wagner, N. J. (2015). Microstructure and rheology relationships for shear thickening colloidal dispersions. Journal of Fluid Mechanics, 769, 242-276.
Hasanzadeh, B. (2017). Testing and modeling of the thixotropic behavior of cementitious materials.
Hassan, T., Ahmad, N., Khan, D., Mohd Hasan, M. R., Aman, A., & Farooq, U. (2023). Performance Evaluation of Asphalt Binder Modified with Shear Thickening Fluid. Journal of Materials in Civil Engineering, 35(7), 04023187.
Johnson, C., Bahia, H., & Coenen, A. (2009). Comparison of bitumen fatigue testing procedures measured in shear and correlations with four-point bending mixture fatigue. Proceedings of the 2nd Workshop on Four Point Bending, Pais,
Liu, H., Zeiada, W., Al-Khateeb, G. G., Shanableh, A., & Samarai, M. (2020). Characterization of the shear-thinning behavior of asphalt binders with consideration of yield stress. Materials and Structures, 53, 1-13.
Montañez, J., Martin, A. E., & Arámbula-Mercado, E. (2023). Development and Verification of CTIndex Correction Methods to Normalize Air Void Content and Thickness of Field Cores. Transportation Research Record, 2677(9), 478-488.
Saranya, R. (2022). Rheological and chemical characterization of multi-source bitumen: A first step toward an alternative evaluation procedure of paving binders
Singh, D., Kuity, A., Girimath, S., Suchismita, A., & Showkat, B. (2020). Investigation of chemical, microstructural, and rheological perspective of asphalt binder modified with graphene oxide. Journal of Materials in Civil Engineering, 32(11), 04020323.
Tian, T. (2014). Study of shear thickening/stiffened materials and their applications.
Wagner, N. J., & Brady, J. F. (2009). Shear thickening in colloidal dispersions. Physics Today, 62(10), 27-32.
Wang, C., Xue, L., Xie, W., You, Z., & Yang, X. (2018). Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Construction and Building Materials, 167, 348-358.
Wang, Y., Wang, C., & Bahia, H. (2017). Comparison of the fatigue failure behaviour for asphalt binder using both cyclic and monotonic loading modes. Construction and Building Materials, 151, 767-774.
Wei, M., Lin, K., & Sun, L. (2022). Shear thickening fluids and their applications. Materials & Design, 216, 110570.
Yan, Y., Wei, M., & Huang, Z. (2024). Review on shear thickening fluid and its applications in vibration reduction. Materials Research Express, 11(1), 012001.
Zhou, F., Steger, R., & Mogawer, W. (2021). Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Construction and Building Materials, 287, 123020.

無法下載圖示
全文公開日期 2026/07/19 (校外網路)
全文公開日期 2026/07/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE