簡易檢索 / 詳目顯示

研究生: 羅尊仁
TUSN-JEN LO
論文名稱: 橡膠瀝青流變行為與工程性質評估
Rheological Behavior and Engineering Evaluation of Crumb Rubber Modified Asphalt Binders
指導教授: 廖敏志
Min-Chih Liao
口試委員: 黃兆龍
Chao-Lung Hwang
陳建旭
Jian-Shiuh Chen
廖敏志
Min-Chih Liao
蘇育民
Yu-Min Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 156
中文關鍵詞: 橡膠瀝青流變行為多重應力潛變恢復試驗
外文關鍵詞: Crumb Rubber Modified Bitumen, Rheological Behavior, Multiple Stress Creep Recovery
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內橡膠瀝青規範依基本物性作為分類依據,無法適當地橡膠瀝青的鋪面性能,仍需建立橡膠瀝青流變行為的預測模式,瞭解橡膠瀝青於不同氣候及交通條件下鋪面性能良窳。本研究選用通過No.30號篩橡膠膠粉與通過No.200橡膠膠粉作為瀝青改質劑,其中,通過No.30號篩橡膠膠粉之橡膠瀝青進行基本物性試驗及韌性試驗,而通過No.200號篩橡膠膠粉之橡膠瀝青進行DSR流變試驗。基本物性及韌性試驗顯示橡膠膠粉能提升基底瀝青的軟化點、黏滯度及回彈率,也會降低其針入度及溫感性;依國內橡膠瀝青規範分類,採用針入度60/70瀝青作為橡膠瀝青的基底瀝青,添加15%橡膠膠粉改質後,能滿足TypeⅠ與TypeⅡ的基本物性要求;另外,橡膠瀝青內含溶脹橡膠無法增加基底瀝青於25℃時的黏結力,但能提升基底瀝青的抗拉拔強度。頻率掃描試驗顯示橡膠膠粉能使基底瀝青的複合剪切模數增加、相位角減少,提升基底瀝青的高溫抗車轍變形能力;CA流變模式、改良型CAM流變模式及多項式流變模式均能擬合出橡膠瀝青的流變行為,然而,橡膠瀝青內存有溶脹橡膠,將導致橡膠瀝青的工作溫度隨橡膠添加量增加而提高,經不同工作溫度分析法得知,相位角法與穩態剪切流動法所獲得的工作溫度均較傳統Brookfield黏滯度法還低,仍需透過試拌與試鋪程序決定;多重應力潛變恢復試驗亦發現橡膠膠粉能提升石油瀝青的抗變形能力與交通承載能力,針入度60/70瀝青經添加15%以上的橡膠膠粉改質後,歸類為能承受中度重載交通量,而針入度20/40瀝青、改質Ⅲ型瀝青及高黏度改質瀝青均歸類為能承受極度重載交通量。


    Due to the fact that the current specification for the Crumb Rubber Modified Bitumen (CRMB) only represents the conventional properties of the CRMB at specified temperatures, it is necessary to investigate the rheological behavior of the CRMB over a wide range of temperatures. The objective of this study was to investigate the effects of base asphalt type and crumb rubber content on the pavement-related performance of the CRMB. The CRMBs were also classified in terms of the climate and traffic conditions. The empirical test results showed that the performance of penetration, softening point, viscosity, elastic recovery and viscosity-temperature-susceptibility was improved due to the rubber modification. The pen grade 60/70 asphalt containing 15% crumb rubber met the Type I and Type II specification. The toughness test result revealed that the ultimate strength was increased with increasing the rubber content, whereas a reduction in tenacity was obtained for the CRMB at higher rubber contents. With regards to the DSR master curves, the rubber modification enhanced the shear complex modulus (G*) and reduced the phase angle (δ). In addition, the curve fitting using the classic rheological models clearly interpreted the rheological behavior of the CRMBs over a wide range of the temperatures. Regarding the workability for the CRMBs, the mixing and compaction temperatures using the phase angle method and steady shear flow method were lower compared to those using the traditional Brookfield rotational viscosity method. It was recommended that the temperatures for the workability be determined in term of the trial mixes in the plant. In addition, based on the MSCR (multiple stress creep recovery) test results, the pen grade 60/70 asphalt incorporating 15% and 20% rubber contents could be used for very high traffic condition, while the highly-modified polymer asphalt could be utilized for extreme traffic condition.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 1.3 研究目的 1.4 研究範圍 第二章 文獻回顧 2.1 瀝青材料 2.1.1 瀝青化學元素成分 2.1.2 瀝青化學型態組成 2.1.3 瀝青膠體系統 2.1.4 瀝青老化機制 2.2 橡膠膠粉 2.2.1 廢棄輪胎的組成 2.2.2 橡膠膠粉製程 2.2.3 橡膠瀝青混拌製程 2.3 橡膠與瀝青間交互作用機制 2.4 橡膠瀝青添加劑 2.5 國內橡膠瀝青規範 2.6 瀝青流變性質 2.6.1 瀝青流變行為與流變參數 2.6.2 時間與溫度重疊原理 2.6.3 溫度平移因子 2.6.4 瀝青線黏彈流變模式 2.6.5 等值黏滯溫度 2.7 瀝青工作溫度決定 2.7.1 傳統Brookfield黏滯度法 2.7.2 相位角法 2.7.3 穩態剪切流動法 2.8 瀝青流變參數與鋪面績效之關聯性 2.8.1 PG瀝青膠泥績效分類 2.8.2 AASHTO M322瀝青膠泥績效等級規範 第三章 研究計畫 3.1 試驗範圍 3.2 研究流程 3.3 試體編號 3.4 試驗材料 3.4.1 石油瀝青 3.4.2 高分子改質瀝青 3.4.3 橡膠膠粉 3.5 試驗方法與設備 3.5.1 橡膠篩分析、鐵金屬及纖維含量試驗 3.5.2 橡膠含水量試驗 3.5.3 橡膠比重試驗 3.5.4 針入度試驗 3.5.5 軟化點試驗 3.5.6 Brookfield黏滯度試驗 3.5.7 韌性試驗 3.5.8 彈性恢復試驗 3.5.9 TFOT老化試驗 3.5.10 頻率掃描試驗 3.5.11 多重應力潛變恢復試驗 3.5.12 穩態剪切流動試驗 3.5.13 掃描式電子顯微鏡拍攝試驗 第四章 結果與分析 4.1 瀝青基本物性分析 4.2 橡膠基本物性分析 4.3 橡膠瀝青基本性分析 4.3.1 針入度試驗結果 4.3.2 軟化點試驗結果 4.3.3 Brookfield 黏滯度試驗結果 4.3.4 彈性恢復試驗結果 4.3.5 國內橡膠瀝青分類 4.4 韌性行為分析 4.5 流變行為分析 4.5.1 頻率掃描試驗結果 4.5.2 等值黏滯溫度與PG高溫性能溫度之結果 4.5.3 ZSV與G*/sinδ之抗車轍指標結果 4.5.4 流變模式適用性 4.6 多重應力潛變恢復試驗結果 4.7 橡膠瀝青的工作性分析 4.8 橡膠瀝青微觀影像分析 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻  

    Airey, G.D., Singleton, T.M. and Collop, C., “Properties of Polymer Modified Bitumen after Rubber-Bitumen Interaction,” Journal of Material in Civil Engineering, 14, pp. 344-354, 2012.

    British Strandards., “Bitumen and Bituminous Binders-Determination of Equiviscous Based on Low Shear Viscosity using a Dynamic Shear Rheometer in Low Frequency Oscillation Mode, ” BSI, DD CEN/TS 15324, 2008.

    Bukowski, J., Youtcheff, J. and Harman, T., “The Multiple Stress Creep Recovery (MSCR)Proedure,” FHWA-HIF-11-038, 2011.

    Christensen, D., Anderson, D., Bahia, R., Sharma, M.G. and Antle, C., “Binder Characterization and Evaluation Volume 3: Physical Characterization,” Strategic Highway Research Program, SHRP-A-369, 1994.

    Divya, P.S., Gideon, C.S. and Krishnan, M., “Influence of the Type of Binder and Crumb Rubber on the Creep and Recovery of Crumb Rubber Modified Bitumen,” Journal of Material in Civil Engineering, 25, pp. 438-449, 2013.
    Farouk, A., Hassan, N., Mahmud, M., Mirza, J., Jaya, R., Hainin, M., Yaacob, H. and Yusoff, N., “Effect of Mixture Design Variable on Rubber-Bitumen Interaction: Properties of Dry Mixed Rubberized Asphalt Mixture”Material and Structures, 12, pp. 1-10, 2017.
    Fwa, T.F., “The Handbook of Highway Engineering,” Boca Raton, Taylor &Francis, 2006.
    Ghavibazoo, A., Abdelrahman, M. and Ragab, M., “Evaluation of Oxidization of Crumb Rubber–Modified Asphalt During Short-Term Aging,” Journal of the Transportation Research Board, 2505, pp. 84-91, 2015.

    Hick, R.G., Lundy, J.R., Leahy, R.B., Hanson, D., and Epps, J., “Crumb Rubber Modifiders(CRM)in Asphalt Pavement: Summary of Pracrices in Arizona, California, and Florida,” Report FHWA-SA-95-056, FHWA, 1995.

    Hunter, J., and Read, N., “The Shell Bitumen Handbook,” London, Thomas Telford Publishing, 2015.

    Hossain, Z., Ghosh, D., Zaman, M. and Hobson, K., “Use of the Multiple Stress Creep Recovery(CRM)Test Method to Characterize Polymer-Modified Asphalt Binder,” Journal of Testing and Evaluation, 44, pp. 1-14, 2016.

    Jamrah, A., Kutay, M.E. and Varma, S., “Backcalculation of Swollen Crumb Rubber Modulus in Asphalt Rubber Binder and Its Relation to Performance,”Journal of Transportation Research Board, 2505, pp. 99-107, 2015.

    Kedarisetty, S., Prapoorna, K. and Sousa, J., “Advanced Rheological Charac-terization of Reacted and Activated Rubber(RAR)Modified Asphalt Binders” Construction and Building Materials, 122, pp. 12-22, 2016.

    Presti, D.L., “Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A Literature Review,” Construction and Building Materials, 49, pp. 863-881, 2013.

    Lesuer, D., “The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification”Advances in Colloid and Interface Science, 145, pp. 42-82, 2009.

    López-Moro, F., Moro, M., Olivares, F., Witoszek-Schultz, B. and Alonso-Fernández, M., “Microscopic Analysis of the Interaction between Crumb Rubber and Bitumen in Asphalt Mixtures using the Dry Process,” Construction and Building Materials, 48, pp. 691-699, 2013.

    Liao, M.C. and Chen, J.S., “Zero Shear Viscosity of Bitumen-Filler Mastics,” Journal of Material in Civil Engineering, 23, pp. 1672-1680, 2011.

    Presti, D.L., Fecarotti, C., Clare, A.T. and Airey, G., “Toward More Realistic Viscosity Measurements of Tyre Rubber-bitumen Blends” Construction and Building Materials, 67, pp.270-278, 2014.

    Peralta, J., Silva, H., Hilliou, L., Machado, A., Pais, J. and Williams, R., “Mutual Changes in Bitumen and Rubber Related to the Production of Asphalt Rubber Binders,” Construction and Building Materials, 36, pp. 557-565, 2012.

    Petersen, J., Robertson, E., Branthaver, J., Harnsberger, P., Duvall, S., Christensen, D., Anderson, D., Bahia, R., Dongre, R., Antle, C. and Sharma, M., “Binder Characterization and Evaluation Volume 4: Test Methods,” Strategic Hihghway Rssearch Program, SHRP-A-370, 1994.

    Sheng, Y., Li, H., Greng, J., Tain, Y., Li, Z. and Xiong, R., “Production and Performance of Desulfurized Rubber Asphalt Binder,” International
    Journal of Pavement Research and Techcology, 10, pp. 262-273, 2017.

    Sousa, J., Vorobiev, A., Rowe, G. and Ishai, I., “Reacted and Activated Rubber,” Journal of the Transportation Research Board, 2371, pp. 32-40, 2013.

    Shatanawi, K., Biro, S., Geiger, A. and Amirkhanian, S., “Effect of Furfural Activated Crumb Rubber on the Properties of Rubberized Asphalt,” Construction and Building Materials, 28, pp. 96-103, 2012.

    Thives, L.P., Pais, J.C., Pereira, P.A., Triches, G. and Amorim, S.R., “Assesment of the Digestion Time of Asphalt Rubber Binder Based on Microscopy Analysis,” Construction and Building Materials, 47, pp. 431-440, 2013

    Yusoff, N.I.M., Chailleux, E. and Airey, G.D., “A Comparative Study of the Influence of Shift Factor Equations on Master Curve Construction,” International Journal of Pavement Research and Technology, 4, pp. 324-336, 2011.

    Yusoff, N.I.M., Jakarni, F.M., Nguyen, V.H., Hainin, M.R. and Airey, G.D., “Modelling the Rheological Properties of Bituminous Binders Using Mathematical Equation,” Construction and Building Materials, 40, pp. 174-188, 2013.

    Yusoff, N.I.M., Shaw, M.T. and Airey, G.D., “Modelling the Linear Viscoelastic Rheological Properties of Bituminous Binders,” Construction and Building Materials, 25, pp. 2171-2189, 2011.

    West, R., Wastson, D., Turner, P. and Casola, J., “Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt,” NCHRP Report 648, 2010.

    無法下載圖示 全文公開日期 2023/06/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE