簡易檢索 / 詳目顯示

研究生: 李佳柔
Chia-Jou Lee
論文名稱: 整合次波長微結構之菲涅爾聚光元件於射出成形研究
Research on Fabrication of Fresnel Condenser Lens Integrated with Sub-Wavelength Micro Structures by Injection Molding
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 謝宏麟
Hung-Lin Hsieh
楊申語
Sen-Yen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 189
中文關鍵詞: 射出成形次波長微結構太陽能電池菲涅爾聚光元件
外文關鍵詞: Injection molding, Fresnel condenser lens, Sub-wavelength structure, Solar cell.
相關次數: 點閱:321下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以射出成形製作具有次波長微結構之菲涅爾聚光元件(Sub-Wavelength Fresnel Condenser Lens),並利用鋯基薄膜金屬玻璃(Zr-Metallic Glass Thin Film, MGTF)濺鍍於模板上增加製程脫模性。實驗設計探討固定模溫下,不同射出速度與保壓壓力對於微結構轉寫率、次波長微結構轉寫率以及殘留應力之影響及探討次波長菲涅爾聚光元件在穿透率與功能性量測III-V族和矽基太陽能發電效率的影響。實驗結果得知在高射速高保壓下,可得最佳Fresnel微結構轉寫率96.04%及低射速高保壓下,可得次波長微結構轉寫率84%。Zr-MGTF之次波長微結構模板表面形貌於多次射出180次後其模板保持完整,得知Zr-MGTF能提高模板強度及增加脫模性,達到模板重複性使用。光學檢測結果,最佳的次波長微結構轉寫率於波長300nm~700nm範圍內可提升相對穿透率4.59%。太陽能發電效率的量測上,分別量測III-V族和矽基太陽能電池,可得知最佳的次波長微結構轉寫率之菲涅爾聚光元件應用於III-V族太陽能電池上可以有效提升相對太陽能發電效率2.29%,證明次波長微結構可以達到抗反射效果,未來可應用於太陽能電池模組產業上。


This research is to develop a fabrication process of integrated with sub-wavelength structure on fresnel condenser lens (SWFCL) by injection molding process. The sub-wavelength structure made by porous anodic aluminum (PAA) template coated with Zr-MGTF (Zr-Metallic Glass Thin Film, Zr-MGTF). Experimental design is considered with injection velocity and packing pressure for evaluating the groove filling rate (GFR), sub-microstructure filling ratio (SFR) and residual stress. Results show that the GFR and SFR increase as 96.04% and 84% respectively with packing pressure 70MPa by injection molding. Moreover, the mold insert of PAA template can be intacted after 180 times injection molding process because the Zr-MGTF coated on mold insert can effectively assist in demolding. The SWFCL with sub-wavelength structure can increase as 4.59% transmittance in range of 300nm to 700nm wavelength as compared with that of non-structure fresnel condenser lens. Regarding to the efficiency of solar cells, the SWFCL can achieve relative by increasing 2.29% efficiency for applying on the III-V based solar cell. Future development can focus on extensive field test of solar cells module.

摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XIII 符號表 XV 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 7 1.3 研究方法 8 1.4 論文架構 9 第二章 文獻回顧 11 2.1 射出成形製程模式 11 2.2 射出壓縮成形技術 15 2.3 菲涅爾透鏡之應用相關文獻回顧 18 2.4 次波長抗反射結構相關文獻 20 2.5 射出成形相關文獻 25 2.6 金屬玻璃發展相關文獻 31 2.7 相關專利分析 35 2.8 文獻與專利回顧總結 42 第三章 光學元件設計與原理 47 3.1 抗反射光學理論 47 3.1.1 光波動理論 47 3.1.2 次波長結構光柵 51 3.1.3 非均質層理論與等效介質理論. 52 3.2 聚光元件之光學設計與分析 54 3.2.1 聚光元件光學設計 54 3.2.2 光學分析 57 第四章 模具設計分析 61 4.1 模流分析 61 4.4模具設計與模仁加工 65 4.4.1 模具設計 65 4.4.2 多孔質陽極氧化鋁模板(PAA)製作 67 4.4.3 模仁加工 69 第五章 實驗設備與方法 71 5.1 實驗設備 71 5.1.1 射出成形設備 71 5.1.2 陽極處理主設備 73 5.1.3 量測設備 74 5.2 射出成形實驗規劃 86 5.2.1 取樣方法 86 5.2.2 短射實驗 (Short-shot experiment) 86 5.2.3 成形視窗實驗(Molding window experiment) 87 5.2.4 聚光元件射出成形實驗規劃_A 92 5.3 迴歸分析 98 5.4 聚光元件之成形檢測_A 100 5.4.1 次波長結構轉寫率量測 100 5.4.2 Fresnel微結構轉寫率量測 102 5.5 光學性質量測_B 104 5.5.1 殘留應力檢測 104 5.5.2 穿透率量測 106 5.6 功能性量測_C 107 第六章 實驗結果與討論 108 6.1 不同製程下模穴峰值壓力探討_A 108 6.2 聚光元件之成形性探討_A 111 6.2.1 Fresnel微結構轉寫率量測 111 6.2.2 次波長結構轉寫率量測 116 6.2.3 PAA模板損耗分析 119 6.3 光學性質量測_B 125 6.3.1 殘留應力量測分析_B1 125 6.3.2. 穿透率量測_B2 129 6.4 功能性量測_C 132 6.4.1. 接觸角量測_C1 132 6.4.2. 單一透鏡III-V族太陽能電池效率量測_C2 135 6.4.3. 透鏡模組矽基太陽能電池發電效率量測_C3 141 6.5 結果討論與總結 146 第七章 結論與建議 147 7.1 結論 147 7.2 建議 149 參考文獻 150 附錄A 模流分析PMMA 材料特形圖 154 附錄B實驗模具與入子圖 155 附錄C 矽晶圓性質 161 附錄D 射出機規格FANUC ROBOSHOT α-15iA 162 附錄E Delpet 80NH材料性質表 163 附錄F 太陽能發電量測 164 作者簡介 169

[1] H. Field, “Solar cell spectral response measurement errors related to
spectral band width and chopped light waveform,” National Renewable
Energy Laboratory,1999.
[2] 江志宏,慶聲太陽產業報導,聚光型太陽能電池。。
[3] 顧鴻濤,"太陽能電池元件導論",全威圖書出版公司,2008年。
[4] C.-C. A. Chen, Handout of Manufacturing Analysis, Department of
Mechanical Engineering, National Taiwan University of Science and
Technology,2008.
[5] 李志成,"太陽光聚焦於光纖內傳輸之效能評估",成功大學,碩士論文,2005。
[6] 葉上平,"用於III-V族太陽能電池之高效率且均勻化聚光鏡之研究",國立中央大學,光電科學工程
學研究所碩士論文,2007。
[7] Masafumi Yamaguchi, et al, “Novel materials for high-efficiency III–V
multi-junction solar cells ,” Solar Energy, 82,2008, 173-180。
[8] 莊榮翰,"太陽追蹤器之設計與測",國立中央大學,能源工程研究所碩士論文,2008。
[9] 林苡任,"菲涅爾透鏡之光學設計與精密成形",國立高雄應用科技大學模具工程系碩士班論文,
2009。
[10] 陳德文,"用於聚光型太陽能電池之Fresnel Lens模擬與加工",義守大學,機械與子自動化工程
學系,2010。
[11] A. Akisawa , M. Hiramatsu , K. Ozaki,“Design of dome-shaped non-imaging
Fresnel lenses taking chromatic aberration into account,” Solar Energy
,86,2012,877–885
[12] C. David, et al, “Nano-structured anti-reflective surfaces replicated by
hot embossing,” Microelectronic Engineering 61 –62 ,2002, 435 –440
[13] Z. Yu, H. Gao, W. Wu and H. Ge, “Fabrication of large area subwavelength
antireflection structures on Si using trilayer resist nanoimprint
lithography and liftoff,” American Vacuum Society. Vol. 21, pp2874-2877,
2003.
[14] P. R. Stoddart, P. J. Cadusch, “Optical properties of chitin surface
enhanced Raman scattering substrates based on antireflection structures
on cicada wings,” Nanotechnology, 17, pp.680-686, 2006.
[15] S.A. Boden and D. M. Bagnall, “Tunable reflection minima of
nanostructured antireflective surfaces,” Appl. Phys. Lett. 93
,133108,2008.
[16] B. K. Lee, K. J. Cha, T. H. Kwon, "Fabrication of polymer micro/nano-
hybrid lens array by microstructured anodic aluminum oxide (AAO) mold",
Microelectronic Engineering, Vol.86, pp. 857-860, 2009.
[17] J. T. Wu, et al, “A novel fabrication of polymer film with tapered sub-
wavelength structures for anti-reflection,” Microelectronic Engineering
87 ,2010, 1951–1954
[18] Y. R. Lin, J. H. He,“ Fabrication of Dimension-tunable Si Nanopillar
Arrays with Antireflection and Self-Cleaning Properties,”IEEE,2010.
[19] M. Yoshii, H. Kuramoto, and Y. Ochiai, “Experimental Study of the
Transcription of Minute Width Grooves by Injection Molding(II) ”
,Polymer Engineering and Science, Volume 38, Issue 9. Pp1587-1593, 1977
[20] 廖俊郎,"射出壓縮成型對微型製品光學品質之影響研究",雲林科技大學,機械工程系碩士論文,
2000。
[21] 陳宜正,"具補強肋之塑膠射出壓縮成型品表面凹痕與翹曲變形",雲林科技大學,機械工程系碩士碩
文,2001。
[22] 簡惠民,"不等行程射出壓縮應用於精密楔形板件及表面微結構成型性探討",臺灣大學,機械工程系
碩士論文,2002。
[23] 高旭麒,"繞射光學元件微射壓成形之研究",國立台灣科技大學,機械工程系碩士論文,2006。
[24] 林先明,"複合式光學元件微射壓成形之研究",國立台灣科技大學,機械工程系碩士論文,2008。
[25] Y.E. Yoo, et al, “Injection molding of a nanostructured plate and
measurement of its surface properties” , Current Applied Physics, 9,
e12-e18, 2009.
[26] I. Saarikoski, M. Suvanto, T.A. Pakkanen, “Modification of polycarbonate
surface properties by nano-, micro-, and hierarchical micro–
nanostructuring” , Applied Surface Science ,255 ,9000–9005, 2009.
[27] 李豐吉,"多尺度複合式光學元件射出成形研究",國立台灣科技大學,機械工程研究所碩士論文,
2009。
[28] 王志豪,"振動式射壓於複合式光學元件射出壓縮成形之研究",國立台灣科技大學,機械工程系論
文,2010年。
[29] 葉敬賢,"複合式光學元件於振動式射出壓縮成形之殘留應力及光學品質研究",國立台灣科技大學,
機械工程研究所碩士論文,2011
[30] C.T. Liu, et al, “Test environments and mechanical properties of Zr-
based bulk amorphous alloys,”Metall Mater Trans, 1998, 29A,1811−1824
[31] S. Hata, K. Sato, et al, “ Fabrication of thin film metallic glass and
its application to microactuators ,”Device and Process Technologies for,
SPIE ,vol.3892, p.97-108.
[32] C. L. Chiang,J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan,
“Sputtered Metallic Glass-Forming Films: Solid-State Amorphization and
Their Application ,” Appl. Phys. Lett.88,2006,131902..
[33] P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, “Nanoscale
Patterning of Zr-Al-Cu-Ni Metallic Glass Thin Films Deposited by
Magnetron Sputtering”, J. Nanosci. Nanotech., Vol. 5, pp. 416-420, 2005.
[34] J.P. Chu, C.L. Chiang, H. Wijaya, R. T. Huang, C. W. Wu, B. Zhang, W.H.
Wang, and T. G. Nieh, “Compressive Deformation of a Bulk Ce-Based
Metallic Glass”, Scripta Materialia, 55, 227, 2006.
[35] 梁哲誌,"金屬材料表面塗覆金屬玻璃之疲勞行為與微結構特性研究",國立臺灣海洋大學,材料工程
研究所碩士論文,2007。
[36] C.T. Pan, T.T. Wua, M.F. Chen, Y.C. Chang, C.J. Lee, J.C. Huang, “Hot
embossing of micro-lens array on bulk metallic glass,” Sensors and
Actuators A,2008,422-431
[37] 洪伯賢,"鋯基非晶薄膜提升金屬玻璃基材之彎曲韌性及延性研究",國立臺灣科技大學,工程技術研
究所碩士論文,2010。
[38] C.C. A. Chen, J. C. Tang, and C. H. Kuo, "Research on Analysis of
Demolding Force on Zr-based BMG and Injection Molding Application",
International Conference on Bulk Metallic Glasses, Hong Kong, May. 15-
19, 2011.
[39] 王倫,饒智昇,張哲豪,陳永彬,邱信傑,“導光複合曲面結構”,中華民國專利,公開編號:
200951560,2009.
[40] 張立武、章絹明、王家康、王志成、林稚苹,“太陽電池聚光透鏡之構造”,中華民國專利,公開編
號:200933195,2009.
[41] 哈特薩爾 安卓 凱西,強森 麥可 艾倫,瓊薩 詹姆士 麥克,賓森 歐雷斯特 二世,“菲涅爾透
鏡”, 中華民國專利,公開編號:201130869,2011.
[42] 余泰成、黃雍倫、林奕村,“聚光裝置”, 中華民國專利,公開編號:201205142,2012.
[43] H. Y. Shin, et al, “Test device for solar concentrator module ,”
U.S.,No.11/603,044 0115830 A1,2008
[44] 丁嘉仁,許沁如,聶雅玉,張哲瑋,“次波長結構抗反射膜片發展現況” ,機械工業雜誌,282期,
2006.
[45] D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: A
review,” Solar Energy Materials & Solar Cells, Vol.68, pp.313-336, 2001.
[46] 葉玉堂,饒建珍,肖峻,"幾何光學",五南圖書出版公司,2008年,12月初版
[47] 陳永彬,李昭德,張哲豪,王倫,“以干涉微影方法製作光學抗反射結構之應用研究” ,機械工業雜
誌,294期,2007.
[48] 許招墉,“物理光學”,俊傑書局股份有限公司,2002.
[49] 陳永坤,”雙面微溝槽之薄件射出成形研究”,國立台灣科技大學機械工程研究所,2007
[50] 陳建志,” 鍍鋁矽晶圓之多孔質陽極氧化鋁結構製作大面積抗反射結構製程研究”,國立
台灣科技大學機械工程研究所,2010.
[51] 松特格,"熱力學",全華出版公司,2007
[52] Z. T. , Costas G, “Principles of Polymer Processing”, John Wiley &Sons,
New York, 1979.
[53] Robert N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,”
28, 988-994, 1936.
[54] 陳智榮,"白光光彈術於塑膠成形平板殘留應力分析",2009機電整合科技應用研討會論文集暨全國
大專生機電整合專題論文研討會,2009

QR CODE