簡易檢索 / 詳目顯示

研究生: 黃信傑
Xin-Jie Huang
論文名稱: 智慧晶圓之無線動態化學機械拋光製程參數壓力與溫度量測系統
Study on Smart Wafer for Process Parameter Measurement for Chemical Mechanical Polishing
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 徐文祥
Wen-Syang Hsu
蔡宏營
Hung-Yin Tsai
林建憲
Jian-Shian Lin
張以全
I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 209
中文關鍵詞: 智慧晶圓嵌入式壓力感測器無線動態量測系統化學機械拋光/平坦化晶圓拋光
外文關鍵詞: Smart Wafer, Embedded pressure sensor, Wireless and dynamic measurement system, Chemical Mechanical Polishing/Planarization (CMP), Wafer Polishing
相關次數: 點閱:615下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在半導體產業中,晶圓於化學機械拋光/平坦化(Chemical Mechanical Polishing /Planarization, CMP)過程中,下壓力變化可能會產生如表面刮傷、翹曲及腐蝕等缺陷,這些缺陷將對產品的良率造成嚴重影響。若能即時觀察製程中的壓力、溫度等參數變化,便能進一步分析出拋光時的重量變化與材料移除率和表面粗糙度之間的關係,藉此獲得最佳的研磨拋光效果。因此,本研究目的為開發一種適用於化學機械拋光/平坦化的智慧晶圓無線動態製程參數量測系統(Smart Wafer Wireless and Dynamic Process Parameter Measurement System),藉由Windows裝置、Android裝置與Smart Wafer裝置,其包含力感測器及溫度感測器,透過無線傳輸模組,可偵測從拋光頭施壓於晶圓上的各點力變化及溫度變化之動態訊號,以便在任何適用該裝置的CMP機台進行操作。本研究將透過此裝置,驗證在不同晶圓,相同CMP參數製程下,不同量測位置對晶圓拋光時之受力變化、表面粗糙度及溫度變化探討。力感測器量測之重量平均值與各位置之厚度變化有正相關。溫度感測與拋光墊的溫度變化其趨勢雷同。可觀察到不同位置受力情形會互相受影響、互相有關聯的。有Slurry的情況,其拋光較均勻化。研究成果期盼在未來可應用於化學機械平坦化、晶圓拋光製程上,做為精進製程之參考依據。


In the semiconductor industry, variations in the downforce of wafers during chemical mechanical polishing / planarization, CMP polishing might cause some defects such as surface scratches, warpage, and corrosion. These defects can have a serious impact on the yield of production. If the pressure, temperature and other process parameter can be observed in-situ, the correlation between the weight change curves during polishing, the material removal rate and surface roughness can be further analyzed, in order to obtain optimal polishing effect. Therefore, this study aims to develop a Smart Wafer equipment.
With Windows device, Android device and Smart Wafer device, it includes force sensors and temperature sensor to measure and then transport by the wireless transmission module. It can detect the force changes and temperature changes from the polishing head to the wafer. It is also used for in-situ dynamic signal on any CMP machine.The reaserch using the equipment verifies differents kinds of wafer under the same CMP parameter process to measure the force change, wafer surface roughness, and temperature change at the different positions. The average weight values from force sensors have high correlation to the wafer thickness. The temperature has the same trend to the change of polishing pad. It observes that the forced situations at different positions have related to each other. In the case of Slurry condition, the polishing results are well-distributed. The researches are expected to be applied to chemical mechanical planarization and wafer polishing processes in the future as a benchmark for improving CMP process.

摘要 II Abstract III 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XXI 符號表 XXIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 3 1.3 論文架構 5 第二章 文獻回顧 7 2.1 製程參數量測 7 2.2 CMP參數影響 17 2.3 藍寶石、玻璃、矽晶圓CMP 19 2.4 相關專利 21 2.4.1 CMP製程檢測 21 2.4.2 拋光頭 25 2.5 文獻回顧總結 28 第三章 Smart Wafer原理介紹 29 3.1 Smart Wafer 運作原理 29 3.2 Smart Wafer 系統架構 31 3.2.1 硬體 31 3.3 Smart Wafer 系統組成介紹 39 3.3.1 軟體 51 3.3.2 程式碼 54 3.4 Smart Wafer與先前版本之差異比較 58 第四章 Smart Wafer系統測試 59 4.1 Smart Wafer 力感測器校正 59 4.2 Smart Wafer 穩定性測試 61 4.3 Smart Wafer 解析度、訊號更新頻率及反應時間 63 4.4 Smart Wafer 溫度感測器補償 64 第五章 實驗規劃與設備 65 5.1 實驗規劃 65 5.1.1 藍寶石晶圓拋光測試實驗(實驗A) 66 5.1.2 玻璃晶圓拋光測試實驗(實驗B) 67 5.1.3 矽晶圓拋光測試實驗(實驗C) 68 5.2 實驗設備 69 5.3 實驗耗材 70 5.3.1 拋光墊 70 5.3.2 測試晶圓 71 5.3.3 拋光液 72 5.4 量測設備 77 第六章 實驗結果與討論 78 6.1 藍寶石晶圓拋光測試實驗(實驗A) 81 6.1.1 藍寶石晶圓拋光測試實驗參數 81 6.1.2 藍寶石晶圓拋光測試實驗結果探討 82 6.2 玻璃晶圓拋光測試實驗(實驗B) 103 6.2.1 玻璃晶圓拋光測試實驗參數 103 6.2.2 玻璃晶圓拋光測試實驗結果探討 104 6.3 矽晶圓拋光測試實驗(實驗C) 125 6.3.1 矽晶圓拋光測試實驗參數 125 6.3.2 矽晶圓拋光測試實驗結果探討 126 6.4 結果與討論總結 147 第七章 結論與建議 149 參考文獻 151 附錄 A 量測設備 154 附錄 B 投稿文章 158 附錄 C Arduino 程式碼 164 附錄 D Android 程式碼 168 作者簡介 183

[1]蕭宏,"半導體製程技術導論(第三版) ," 全華圖書, 2017.
[2]Zantye, P. B., Kumar, A., and Sikder, A. K., "Chemical mechanical planarization for microelectronics applications," Materials Science and Engineering: R: Reports, 45(3-6), 89-220, 2004
[3]Beyer, K. D., Makris, J. S., Mendel, E., Nummy, K. A., Ogura, S., Riseman, J., and Rovedo, N., " Method for removing protuberances at the surface of a semiconductor wafer using a chem-mech polishing technique," U.S. Patent No. 4,671,851, 1987.
[4]Pal, R. K., Sharma, R., Baghel, P. K., Garg, H., and Karar, V., "An approach for quantification of friction and enhancing the process efficiency during polishing of optical glass," Journal of Mechanical Science and Technology, 32(8), 3835-3842, 2018.
[5]Homma, Y., "Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston’s empirical model," Journal of The Electrochemical Society, 153(6), G587-G590,2006
[6]Hocheng, H., and Huang, Y. L., "A comprehensive review of endpoint detection in chemical mechanical planarisation for deep-submicron integrated circuits manufacturing," International Journal of Materials and Product Technology, 18(4-6), 469-486, 2003.
[7]Jeong, H., Kim, H., Lee, S., and Dornfeld, D., "Multi-sensor monitoring system in chemical mechanical planarization (CMP) for correlations with process issues," CIRP annals, 55(1), 325-328, 2006
[8]Lee, C., Park, J., Kinoshita, M., and Jeong, H., "Development of intelligent pad monitoring system and application to analysis of pressure distribution in chemical mechanical polishing process," International Journal of Precision Engineering and Manufacturing, 15(9), 2005-2009, 2014.
[9]Lee, C., Park, J., Kinoshita, M., and Jeong, H., "Analysis of pressure distribution and verification of pressure signal by changes load and velocity in chemical mechanical polishing," International Journal of Precision Engineering and Manufacturing, 16(6), 1061-1066, 2015.

[10]Chen, C. C. A., Chiou ,W. J., Tsai, M. C. and Huang, X. J., "Wireless Pressure Feedback System for Wafer Polishing Process," The 14th International Confernce on Automation Technology (Automation 2017), SA2-1#1061, 2017.
[11]Philipossian, A., and Mitchell, E., "Slurry utilization efficiency studies in chemical mechanical planarization," Japanese journal of applied physics, 42(12R), 7259, 2003.
[12]Li, Z., Borucki, L., Koshiyama, I., and Philipossian, A., "Effect of slurry flow rate on tribological, thermal, and removal rate attributes of copper CMP," Journal of the Electrochemical Society, 151(7), G482-G487, 2004.
[13]Kakireddy, V. R., Mudhivarthi, S., and Kumar, A., "Effect of temperature on copper damascene chemical mechanical polishing process," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 26(1), 141-150, 2008.
[14]溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究," 國立臺灣科技大學, 機械工程學系碩士論文, 2014.
[15]郭尚儒, "電致動力輔助化學機械平坦化製程應用於玻璃穿孔晶圓平坦化研究," 國立臺灣科技大學, 機械工程學系碩士論文, 2016.
[16]Chen, H. C., and Hsu, S. L.," Chemical/mechanical planarization (CMP) endpoint method using measurement of polishing pad temperature," U.S. Patent No. 5,597,442, 1997.
[17]Swedek, B., and Wiswesser, A. N.," Endpoint detection with light beams of different wavelengths," U.S. Patent No. 6,607,422, 2003.
[18]Chen, C. C. A., Li, X. C., Lin, T. C.,and Hsu, J. M., “SMART WAFER TESTING SYSTEM," I552244.
[19]Zuniga, S., and Chen, H.," Carrier head for chemical mechanical polishing,"U.S. Patent No. 6,162,116, 2000.
[20]Kimura, N., and Yasuda, H.," Workpiece carrier and polishing apparatus having workpiece," U.S. Patent No. 6,443,821, 2002.
[21]Kim, J., Ban, J., and Lee, S.," Carrier head," U.S. Patent No. 9,818,619,2017
[22]Tekscan, Inc., " FlexiForce Standard Model A301,"Available from : https://www.tekscan.com/sites/default/files/resources/FLX-A301-F-Redesign_1.pdf
[23]Arduino , "ARDUINO NANO,", Available from : https://store.arduino.cc/
usa/arduino-nano
[24]Tun-Hwa Electronic Material Co., Ltd, "HC-06 Product Specification," Available from : https://shop.cpu.com.tw/product/47191/info/
[25]MEMS TECHNOLOGY CORP., “TUR-AMP (OPA)," Available from : http://www.memstec.com.tw/productDetail.php?PNo=107
[26]MEMS TECHNOLOGY CORP., “Tekscan FlexiForce A301_25lb," Available from : http://www.memstec.com.tw/productDetail.php?PNo
=107#tab3
[27]14CORE, “Analog Temperature Sensor," Available from : https://www.
14core.com/wiring-the-analog-temperature-sensor/
[28]Hotchip Technology Co., “HT4928S," Available from : http://www.
hotchip.com.cn/product/details/id/7.html
[29]Shiuanlin, Inc., “104050," Available from : https://goods.ruten.com.tw/item
/show?21537652764974
[30]X.K.T, Inc., “XKT801-12," Available from : https://item.taobao.com/
item.htm?spm=a1z0d.6639537.1997196601.258.46cd5886fJ4FZA&id
=542555335907
[31]ASUSTeK Computer Inc., “Nexus 7," Available from : https://www.
asus.com/tw/Tablets/Nexus_7/overview/
[32]Tekscan, Inc., "Calibration Quick Start Guide for FlexiForce® Sensors," Available from : https://reurl.cc/56Q3R .pdf
[33]黃裕程, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究," 國立臺灣科技大學, 機械工程學系碩士論文, 2017.
[34]Fujimi Corporation, "サファイア基板向 研磨スラリー," Available from : http://www.fujimiinc.co.jp/service/catalog/file/dis.pdf
[35]李怡萱, "微細發泡射出成形於拋光墊製造及化學機械平坦化應用研究," 國立臺灣科技大學, 機械工程學系碩士論文, 2018.

QR CODE