簡易檢索 / 詳目顯示

研究生: 彭倫忠
Lun-Chung Peng
論文名稱: 合作式通訊中中繼節點的資料篩選與目的節點的信號合併
Data Censoring at Relay and Signal Combining at Destination in Cooperative Communications
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 林士駿
Shih-Chun Lin
廖弘源
Hong-Yuan Liao
方文賢
Wen-Hsien Fang
李大嵩
Ta-Sung Lee
呂福生
Fu-Sheng Lu
溫志宏
Jyh-Horng Wen
項天瑞
Tien-Ruey Hsiang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 97
中文關鍵詞: 無線資料傳輸合作式分集選擇式解碼後傳送審查式中繼節點能量偵測器功率分配
外文關鍵詞: wireless data transmission, cooperative diversity, selective decode-and-forward, censorial relay, energy detector, power allocation.
相關次數: 點閱:178下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了於衰落通道下提供強健的無線數據傳輸,各種中繼節點的使用機制已被廣泛提出。某些中繼節點所使用的篩選機制,若中繼節點所接收到的訊息其可靠度被視為太低,中繼節點將選擇不將其後傳。一些研究人員稱此種機制為選擇性解碼與後傳機制。此種機制的使用將可以抑制錯誤漫延並提高分集增益於合作式通訊網路。在本論文中,主要的研究將於此機制下完成。進一步的說,我們系統所採用的中繼節點機制是篩選式的中繼節點(中繼節點進行篩選任務)。它採用對數似然比(LLR)或訊號雜訊比(SNR)的形式來計算其所接收到每一個位元(從來源端)之可靠度。若被篩選位元的對數似然比或訊號雜訊比其大小低於預先所設定之臨界值,那麼它將被刪除(即不後送到目的端)。合作式中繼網路中的另一個主要探討的議題為分集合併機制。採用適當的分集合併方式將可主宰於目的端的解碼效能。先前對於具有篩選機制之中繼節點的研究工作均於目的端使用最大比例合併機制以合併其所接收之分集訊號。但最大比例合併機制對於具有中繼節點的合作式通訊網路而言並非為最佳的合併機制,因為中繼節點偶爾會做出錯誤的決策。因此在本研究中,於目的端並不採用如先前研究工作所廣泛使用的最大比例合併機制,而是推導出最佳的分集合併權重。當傳輸通道設定為瑞利衰落,我們在不同場景條件下推導系統所對應之封閉形式位元錯誤率(BER)表示式。這些場景是依據每一個端點可獲得不同程度之通道狀態訊息(CSI)與目的端是否裝置有能量偵測器(ED)來給與區別。藉由使用這些封閉形式的位元錯誤率表示式,可以有效的優化系統參數,取得系統最小的位元錯誤率。這些系統參數包含了篩選臨界點、分集合併權重與功率分配比例。觀察得到的系統效能模擬結果與透過系統之封閉形式位元錯誤率計算所得之理論值可發現其非常匹配與接近,此外,也可發現因為系統只需要統計性的通道狀態訊息,所以使用低複雜度的計算即可快速得到所需之系統最佳功率分配比例。將所提出之系統與其他中繼節點具有篩選機制的系統相比較其效能,可發現我們提出之系統架構於位元錯誤率效能與通道狀態訊息要求量方面均具有較好的表現。


    To provide robust wireless data transmission over fading channels, various schemes which involve the use of relays have been proposed. In some of those schemes, the relay chooses not to forward the received message if its reliability is deemed as too low.
    Some researchers refer to such schemes as selective decode-and-forward. It can be used to suppress the error propagation and hence improve the diversity gain in the cooperative network. Our work in this dissertation falls into such a category. More specifically speaking, the relay in our system is a censorial relay (a relay that performs censorial task). It evaluates the reliability, in terms of log likelihood ratio (LLR) or signal-to-noise ratio (SNR), of a received data bit (from the source). If its LLR or SNR magnitude is below some preset threshold, then it is censored (i.e. not sent to the destination).
    The diversity combining schemes are another issue in the cooperative relaying
    network. Diversity combining strategy can affect the result of decoding in the destination.
    Previous works that address the performance of censorial relays with LLR or SNR
    thresholds often adopt maximum ratio combining (MRC) for signal combining at the
    destination. However, it should be noted that MRC is not optimal for relay-assisted cooperative diversity systems, because the relay can make wrong decisions sometimes.
    Hence, instead of adopting MRC at the destination, an optimal diversity combining weights is sought in this research. When the channel is Rayleigh faded, closed-form bit error rate (BER) expressions for the proposed system are derived for several scenarios.
    Those scenarios are differentiated by the availability of an energy detector (ED) and the various degrees of knowledge regarding the channel state information (CSI). Aided by those closed-form BER expressions, the system parameters can be efficiently optimized
    to achieve the minimum BER. More specifically speaking, these system parameters
    include censoring-thresholds, weighted combining factors and power allocation index.
    Simulation results are observed to closely match theoretical values, as computed by the
    afore-mentioned closed-form BER expressions. It is observed that the incorporation
    of power allocation into the proposed censor-and-relaying cooperative communication
    system greatly improves the BER performance. Moreover, the power allocation task
    can be carried out fast with low computing complexity, because the proposed scheme
    only require the statistical CSI. As compared to some existing relay-assisted systems
    in which censoring is incorporated, the performance of our system is better in terms of
    BER and also in terms of the requirement on the knowledge about the CSI.

    Contents 1 INTRODUCTION 1 1.1 Review of Some Relay-Assisted Communications . . . . . . . . . . . . . 1 1.2 Review of Some Work Related to Censorial Relaying . . . . . . . . . . 2 1.3 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . 4 1.4 Comparison of Our Work with Others . . . . . . . . . . . . . . . . . . . 5 1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 7 2 Techniques Related to Selective Decode-and-Forward Cooperative Communication Systems 8 2.1 Decode-and-Forward Relaying Networks . . . . . . . . . . . . . . . . . 8 2.2 Thresholds of Selective Decode-and-Forward Relaying Strategies . . . . . . . . . . . . . . . . . 10 2.2.1 LLR Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 SNR Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Combining Schemes for Decode-and-Forward Cooperative Diversity Systems . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Linearly Weighted Combining . . . . . . . . . . . . . . . . . . . 15 2.3.2 Maximum Ratio Combining . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Equal Gain Combining . . . . . . . . . . . . . . . . . . . . . . . 17 i 2.4 Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 System Model and Channel State Information 20 3.1 Source, Relay, Destination, and Channels . . . . . . . . . . . . . . . . . 20 3.2 Availability of Energy Detector at the Destination . . . . . . . . . . . . 24 3.3 Knowledge Regarding Channel State Information . . . . . . . . . . . . 25 3.4 Summary of CSI/ED Scenarios . . . . . . . . . . . . . . . . . . . . . . 26 4 Analysis of BER Performance 28 4.1 Average Bit Error Probability Analysis . . . . . . . . . . . . . . . . . . 28 4.2 Events Encountered at the Relay . . . . . . . . . . . . . . . . . . . . . 29 4.3 Events Encountered at the Destination . . . . . . . . . . . . . . . . . . 33 4.3.1 When the Destination is not Equipped with an ED . . . . . . . 34 4.3.2 When the Destination is Equipped with an ED . . . . . . . . . 38 5 Optimal Setting of System Parameters 40 5.1 When the Destination is not Equipped with an ED . . . . . . . . . . . 41 5.2 When the Destination is Equipped with an ED . . . . . . . . . . . . . 43 5.3 Optimal Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 Summary of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Experimental Results and Discussions 48 6.1 A Brief Description of selective DF relaying cooperative communications by Khuong et al. and Kwon et al. . . . . . . . . . . . . . . . . . . . . . 49 6.2 Setup for Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ii 6.3 Comparison of BER Performance with Different Censoring and Combining Schemes . . . . . . . . . . . . . . . 53 6.4 BER vs. PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.5 BER vs. dSR=dSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.6 Experimental Results on Power Allocation . . . . . . . . . . . . . . . . 66 6.7 Reasons for the Superiority of the Proposed Scheme . . . . . . . . . . . 71 7 Conclusions 72 7.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 72 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Bibliography 74 APPENDIX 79 A Equations used in deriving BER and expected BER 79 B Proof of Eq. (4.13), Eq. (4.14) and Eq. (4.15) 82 iii

    Bibliography
    [1] J. N. Laneman, D. N. C. Tse and G. W. Wornell, “Cooperative diversity in
    wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform.
    Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
    [2] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, pp. 2415–2425, Oct. 2003.
    [3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov.2003.
    [4] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part
    II: Implementation aspects and performance analysis,” IEEE Trans. Commun.,
    vol. 51, no. 11, pp. 1939–1948, Nov. 2003.
    [5] A. Nosratinia, T. E. Hunter and A. Hedayat “Cooperative communication in
    wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp.74–80, Oct. 2004.
    [6] S. S. Ikki and M. H. Ahmed, “Multi-branch decode-and-forward cooperative diversity networks performance analysis over Nakagami-m fading channels,” IET
    Commun., vol. 5, no. 6, pp. 872–878, May 2011.
    [7] S. S. Ikki and M. H. Ahmed, “Performance of cooperative diversity using Equal gain Combining (EGC) over Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 557–562, Feb. 2009.
    [8] A. Jain, G. V. V. Sharma, U. B. Desai, and S. N. Merchant, “Exact analysis
    of the piecewise linear combiner for decode and forward cooperation with three
    relays,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2461–2467, Aug.
    2011.
    [9] M. M. Fareed and M. Uysal, “Ber-optimized power allocation for fading relay
    channels,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2350–2359, jun.
    2008.
    [10] M. Wu, D. Wubben and A. Dekorsy, “BER-based power allocation for amplifyand-forward and decode-and-forward relaying systems,” Int. ITG Workshop on Smart Antennas (WSA), pp. 1–8, Feb. 2011.
    [11] M. R. Souryal and B. R. Vojcic, “Performance of amplify-and-forward and
    decode-and-forward relaying in Rayleigh fading with turbo codes,” IEEE Int.
    Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, pp. 681–684,
    May 2006.
    [12] R. Dabora and S. D. Servetto, “On the role of estimate-and-forward with time sharing in cooperative communication,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4409–4431, Oct. 2008.
    [13] C. I. Serediuc, J. Lilleberg, and B. Aazhang, “MAP detection with soft information in an estimate and forward relay network,” Asilomar Conf. on Signals, Systems, and Computers (ASILOMAR), pp. 121–125, Nov. 2010.
    [14] H. V. Khuong and H. Y. Kong, “LLR-based decode-and-forward protocol for
    relay networks and closed-form BER expressions,” IEICE Trans. Fundamentals,
    vol. E89-A, no. 6, pp.1832–1841, June 2006.
    [15] T. Kwon, S. Lim, W. Seo, and D. Hong, “LLR-based symbol selective transmission with a near-optimal threshold to minimize BEP for demodulation-forward relay systems,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 540–545, Feb. 2010.
    [16] R. C. Palat, A. Annamalai, and J. H. Reed, “Log-Likelihood-Ratio based selective decode and forward cooperative communication,” IEEE Vehicular Technology Conf. (VTC Spring), pp. 615–618, May 2008.
    [17] X. Zhang, M. Hasna and A. Ghrayeb, “Performance Analysis of Relay Assignment Schemes for cooperative networks with multiple source-destination pairs,”IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 166–177, Jan. 2012.
    [18] G. Al-Habian, A. Ghrayeb, M. Hasna and A. Abu-Dayya, “Threshold-based relaying in coded cooperative networks,” IEEE Trans. Veh. Technol., vol. 60, no. 1,pp. 123–135, Jan. 2011.
    [19] F. A. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. S. Thompson, and
    I. D. Marsland, “Threshold selection for snr-based selective digital relaying in cooperative wireless networks,” IEEE Trans. Wireless Commun., vol. 57, pp. 4226–4237, Dec. 2008.
    [20] F. A. Onat, Y. Fan, H. Yanikomeroglu, and J. S. Thompson, “Asymptotic BER
    analysis of threshold digital relaying schemes in cooperative wireless systems,”IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4938–4947, Dec. 2008.
    [21] G. Pan, E. Ekici, and Q. Feng, “BER analysis of threshold digital relaying
    schemes over log-normal fading channels,” IEEE Commun. Lett., vol. 15, no. 7,
    pp. 731–733, July 2011.
    [22] T. Y. Wang and J. Y. Wu, “Cooperative communications using reliabilityforwarding relays,” IEEE Trans. Commun., vol. 61, no. 5, pp. 1776–1785, May 2013.
    [23] W. P. Siriwongpairat, T. Himsoon, W. Su, and K. J. R. Liu, “Optimum thresholdselection relaying for decode-and-forward cooperation protocol,” IEEE Wire-less Communications and Networking Conference (WCNC), pp. 1015–1020, Apr.
    2006.
    [24] A. Nasri, R. Schober and M. Uysal, “Enhanced MRC for decode-and-forward
    cooperative diversity systems,” IEEE Trans. Wireless Commun., vol. 11, no. 10,
    pp. 3418–3423, Oct. 2012.
    [25] A. A. Aziz and Y. Iwanami, “Mitigating error propagation with an adaptive
    detect-and-forward strategy in cooperative relay channels,” Int. Conf. on Con-
    vergence (ICTC), pp. 240–244, Sept. 2011.
    [26] X. N. Zeng, A. Ghrayeb and M. Hasna, “Joint optimal threshold-based relaying and ML detection in cooperative networks,” IEEE Commun. Letters, vol. 16,
    no. 6, pp. 773–776, June 2012.
    [27] L. C. Peng and K. T. Lay, “Optimal censorial relaying for communications over
    Rayleigh fading channels,” IEICE Trans. Commun., Vol. E96-B, No. 08, pp.
    2150–2161, Aug. 2013.
    [28] L. C. Peng and K. T. Lay, “Cooperative communications assisted by censorial
    relays,” Journal of Next Generation Information Technology, pp. 78–88, Vol. 4,
    No. 1, Feb. 2013.
    [29] L. C. Peng and K. T. Lay, “Cooperative diversity by censorial relays for communications
    over Rayleigh fading channels,” In Proc. of 2013 IEEE Wireless
    Communications and Networking Conference (WCNC 2013), Shanghai, China,
    pp. 3530–3534, April 2013.
    [30] L. C. Peng, K. T. Lay, and T. F. Li, “Censoring and combining in cooperative
    communications assisted by a relay,” In Proc. of 2012 the 6th International Con-
    ference on New Trends in Information Science and Service Science (NISS'2012),
    Taipei, Taiwan, pp. 213–218, Oct. 2012.
    [31] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors: a lowcommunication-
    rate scheme for distributed detection,” IEEE Trans. Aero. and
    Elec. Sys., vol. 32, no. 2, pp. 554–568, April 1996.
    [32] V. W. Cheng and T. Y. Wang, “Performance analysis of distributed decision
    fusion using a censoring scheme in wireless sensor networks,” IEEE Trans. Veh.
    Technol., vol. 59, no. 6, pp. 2845–2851, July 2010.
    [33] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl.
    Probab., vol. 3, no. 1, pp.120–154, 1971.
    76
    [34] T. Cover and A. A. El Gamal, “Capacity theorems for the relay channel,” IEEE
    Trans. Inform. Theory, vol. 25, no. 5, pp. 572–584, Sept. 1979.
    [35] G. L. Stuber, Principles of Mobile Communication, 2nd ed., Chap. 1, Kluwer-
    Academic, 2001.
    [36] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
    Chap. 4 and 5, Prentice-Hall, 2001.
    [37] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, vol. 47,
    pp. 1075–1102, June 1959.
    [38] T. Eng, N. Kong, and L. B. Milstein, “Comparison of diversity combining techniques
    for Rayleigh-fading channels,” IEEE Trans. Commun., vol. 44, no. 9,
    pp. 1117–1129, Sep. 1996.
    [39] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, October
    1998.
    [40] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun., vol. 47,
    no. 10, pp. 1458–1461, Oct. 1999.
    [41] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ. Press,
    2004.
    [42] D. Bertsekas, A. Scientific and A. E. Ozdaglar, Convex analysis and optimization,
    Athena Scientific, 2003.
    [43] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc. IEEE,
    vol. 55, pp. 523–531, Apr. 1967.
    [44] F. F. Digham, M. S. Alouini and M. K. Simon, “On the energy detection of
    unknown signals over fading channels,” IEEE Trans. Commun., vol. 55, no. 1,
    pp. 21–24, Jan. 2007.
    [45] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive
    radio,” Proc. IEEE, vol. 97, no. 5, pp. 849–877, May 2009.
    [46] E. H. Gismalla and E. Alsusa, “On the performance of energy detection using
    Bartlett’s estimate for spectrum sensing in cognitive radio systems,” IEEE Trans.
    Signal Proces., vol. 60, no. 7, pp. 3394–3404, July 2012.
    [47] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum sensing for cognitive
    radio : State-of-the-art and recent advances,” IEEE Signal Processing Magazine,
    vol. 29, no. 3, pp. 101–116, 2012.
    [48] M. M. Fareed and M. Uysal, “BER-optimized power allocation for fading relay
    channels,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2350–2359, Jun.
    2008.
    77
    [49] M. O. Hasna, and M. Alouini, “Optimal power allocation for relayed transmissions
    over Rayleigh-fading channels,” IEEE Trans. Wireless Commun., vol. 3,
    no. 6, pp. 1999–2004, Nov. 2004.
    [50] A. H. Madsen and J. Zhang, “Capacity bounds and power allocation for wireless
    relay channels,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 2020–2040, Jun.
    2005.
    [51] Y. Hong, W. Huang, F. Chiu, and J. Kuo, “Cooperative communications in
    resource-constrained wireless networks,” IEEE Signal Processing Mag., vol. 24,
    pp. 47–57, May. 2007.
    [52] Y. R. Tsai and L. C. Lin, “Optimal power allocation for decode-and-forward
    cooperative diversity under an outage performance constraint,” IEEE Commun.
    Lett., vol. 14, no. 10, pp. 945–947, Oct. 2010.
    [53] J. G. Proakis and S. Masoud, Digital communications, 5th ed., Chap. 13,
    McGraw-Hill, 2008.
    [54] T. I. Alecu, S. Voloshynovskiy and T. Pun, “The Gaussian transform of distributions:
    definition, computation and application,” IEEE Trans. Signal Proces.,
    vol. 54, no. 8, pp. 2976–2985, Aug. 2006.
    [55] C. Constantinopoulos, M. K. Titsias, and A. Likas, “Bayesian feature and model
    selection for Gaussian mixture models,” IEEE Trans. Pattern Analysis and Ma-
    chine Intelligence, vol. 28, no. 6, pp. 1013–1018, June 2006.
    [56] S. Ghahramani, Fundamentals of probability with stochastic processes, 3rd ed.,
    Pearson Education, 2005.
    [57] M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds and approximations
    for the computation of error probability in fading channels,” IEEE
    Trans. Wireless Commun., vol. 2, no. 4, pp. 840–845, July 2003.

    QR CODE