簡易檢索 / 詳目顯示

研究生: 溫哲民
Je-min Wen
論文名稱: 以真空蒸鍍即時量測法探討n型與p型有機薄膜電晶體膜厚相依性與CMOS inverter(反相器)製作
In-Situ real time Probing Thickness Dependence of the Electrical Characteristics of n-type, p-type Organic Field-Effect Transistors and manufacture CMOS inverter
指導教授: 李志堅
Chih-Chien Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 148
中文關鍵詞: 有機薄膜電晶體即時量測膜厚相依性五環素萘苯亞醯胺衍生物純化鍍率互補式電晶體反相器
外文關鍵詞: in situ, NTCDI
相關次數: 點閱:285下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用p型材料五環素(pentacene)以及n型材料萘苯亞醯胺衍生物(NTCDI-C8F15, N,N’-dipentadecafluorooctyl-1,4,5,8-naphtalene tetracarboxylic Diimide)作為有機薄膜電晶體元件之半導體主動層,並以自行架設之真空蒸鍍即時量測系統(in situ real time measurement system),探討元件特性與膜厚變化的關聯性。於室溫下分別以不同蒸鍍速率(0.01 nm/s, 0.03 nm/s, 0.1 nm/s)蒸鍍五環素薄膜的實驗中發現,蒸鍍條件顯著的影響了初始膜層的成膜品質與覆蓋率,其中以鍍率0.03 nm/s蒸鍍的五環素元件,有著較高的載子遷移率,可達0.21 cm2/Vs,並發現在超薄膜層時(約1.5 nm)便已形成載子傳輸通道;此外在鍍率0.03 nm/s的製程條件時,在超薄膜層(1.5 nm)的覆蓋率亦遠高於其餘兩種製程條件,推測這和高鍍率(0.1nm/s)以及低鍍率(0.01 nm/s)製程的薄膜在氧化層介面間存在較多的孔隙有關,並發現初始膜層的生長品質對於元件特性是至關重要的。
而在材料純化分析研究方面,發現經純化後的五環素電晶體,在低於一個單分子層(1 ML, ~1.54 nm)時便有場效特性產生。在載子遷移率方面,五環素經純化後其載子遷移率由原本的0.13 cm2/Vs增進到0.24 cm2/Vs;由原子力顯微鏡觀察,發現純化後的五環素薄膜有著較大的晶粒大小,並且在0.5 nm超薄膜層時便有極高的覆蓋率,顯示初始膜層成長對於有機薄膜電晶體特性表現有決定性的影響。
n型材料的研究則是以萘苯亞醯胺衍生物(NTCDI-C8F15)為主動層,發現同樣的場效特性在薄膜層時(2 MLs)便可發現,而由原子力顯微鏡更加清楚了解該材料的薄膜成長機制,並發現載子遷移率在厚度約3.5 MLs時便達飽和。
總結以上結果發現,縱使因材料不同而使電晶體元件特性有著不同的表現,其飽和膜厚值(d0)也不儘相同,但我們可以發現在初始膜層成長的品質,對元件特性來說都是同等重要的,並可由此實驗發現最佳化的製程參數。最後我們利用上述n型與p型材料的研究成果,成功製作出互補式邏輯電路中的反相器,並測得其gain值為8。


This thesis has report an in situ and real-time measurement method for the electrical characteristic evolution of n-type (N,N’-dipentadecafluorooctyl-1,4,5,8-naphtalene tetracarboxylic Diimide, NTCDI-C8F15) and p-type (pentacene) organic thin film transistors (OTFTs) during the deposition of organic thin film.
In the first part, we analyze the thickness dependence of pentacene OTFTs where grown the thin film at different deposition rate (0.01, 0.03 and 0.1 nm/s) on the bottom contact substrate at room temperature. We demonstrate that the carrier transport in pentacene OTFTs is strongly affected by the quality of surface coverage in the first few monolayers. In addition, at our optimum deposition rate of 0.03 nm/s, we obtained a hole mobility of 0.21 cm2/Vs better than slow (0.01 nm/s) and fast (0.1 nm/s) rates. We speculate that this improvement of hole mobility is due to the increased surface coverage on the insulator, resulting in improving probability of charge percolation in the channel.
In the second part, we study the thickness dependence of the purified and non-purified pentacene respectively. We found that the field-effect phenomenon could be observed less than 1 ML (~1.54 nm) for the purified pentacene and the hole mobility is improved to 0.24 cm2/V s. With the use of atomic force microscope (AFM) measurement, the purified pentacene exhibits larger grain size and better film coverage, indicating the better crystallinity of the purified pentacene that is mainly from the absence of the impurities. It has demonstrated that the growth mechanism of the first few monolayers plays an important role in the electrical characteristic of organic thin film transistors.
In the third part has presented thickness dependence of n-type (NTCDI-C8F15) organic field-effect transistors. The electron mobility of the device as thin as 2 MLs has been determined. The saturation thickness (d0) is 3.5 MLs. Atomic force microscope revealed that, island mode growth mechanism of NTCDI-C8F15 with near upright position stacking on substrate has been confirmed, is because of the fluorophobic effect of the material
According to the aforementioned, we conclude the thin film growth quality in first few monolayer is the most important issue for organic thin film transistors, although different materials have different electrical characteristics and saturation thickness (d0). We adjusted the best process parameter from these three experiments. Finally, we demonstrated a complementary inverter by using these two materials (pentacene and NTCDI-C8F15) and attained the value of gain at 8, which was similar to literatures.

誌謝 i 中文摘要 iii Abstract v 總目錄 vii 圖目錄 xii 表目錄 xix Chapter1 緒論 1 1-1 有機薄膜電晶體概論 1 1-2 有機半導體材料 5 1-2-1 有機半導體傳輸機制 5 1-2-2 有機半導體能階 6 1-2-3 正型(p-type)有機半導體材料 7 1-2-4 負型(N-type)有機半導體材料 8 1-3 研究動機與方法 11 1-3-1 五環素(pentacene) 11 1-3-2 萘苯亞醯胺衍生物(NTCDI) 11 1-3-3 in situ real time(真空蒸鍍即時量測法) 13 1-3-4 CMOS (互補式金氧半場效電晶體) 17 Chapter2 理論分析 19 2-1 有機薄膜電晶體(OTFTs)介紹與操作原理 19 2-1-1 金屬-氧化物-半導體場效電晶體(MOSFET)介紹 19 2-1-2 薄膜電晶體(TFTs)介紹 22 2-1-3 有機薄膜電晶體(OTFTs)介紹 23 2-2 製程方式 26 2-2-1 真空蒸鍍(vacuum evaporation) 26 2-2-2 溶液塗佈(solution-processed deposition) 28 2-3 理論模型 30 2-3-1 輸出特性分析(Output Characteristic) 30 2-3-2 轉移特性分析(Transfer characteristic) 33 2-4 成膜機制及表面形貌 35 2-5 接觸電阻 39 2-6 CMOS inverter 操作原理 44 Chapter3 實驗方法與步驟 47 3-1 實驗儀器 47 3-1-1 超音波震盪機 47 3-1-2 氧電漿清潔機 48 3-1-3 旋轉塗佈機 48 3-1-4 曝光機 49 3-1-5 熱蒸鍍機 50 3-1-6 光電子光譜儀(AC2) 51 3-1-7 探針式膜厚量測儀(α-step) 52 3-1-8 膜厚修正因子(tooling factor) 52 3-1-9 原子力顯微鏡(Atomic force microscope, AFM) 53 3-1-10 X光繞射儀(XRD) 54 3-1-11 真空蒸鍍即時量測系統(in situ real time measurement system) 55 3-2 元件製作 57 3-2-1 基板製作流程 57 3-2-2 漏電流量測 59 3-2-3 電極處理 60 3-3-4 蒸鍍半導體主動層 61 3-3-5 真空量測 61 Chapter4 結果與討論 62 4-1 變鍍率探討五環素有機薄膜電晶體膜厚相依性 62 4-1-1 真空蒸鍍量測載子遷移率與膜厚相依性 63 4-1-2 臨界電壓、電流開關比與膜厚相依性 66 4-1-3 即時量測(real time)汲極電流與膜厚相依性 70 4-1-4 元件電性表現 75 4-1-5 薄膜表面形貌分析 77 4-1-6 分子結晶性及堆疊程度分析 78 4-2 真空蒸鍍即時量測法分析五環素純化與膜厚之相依性 81 4-2-1 即時量測汲極電流與膜厚相依性 82 4-2-2 元件電性表現 86 4-2-3 薄膜表面形貌分析 88 4-2-4 材料功函數分析 90 4-2-5 分子結晶性及堆疊程度分析 92 4-3 萘苯亞醯胺衍生物(NTCDI-C8F15)膜後相依性探討 94 4-3-1 真空蒸鍍量測載子遷移率與膜厚相依性 94 4-3-2 臨界電壓、電流開關比與膜厚相依性 96 4-3-3 元件電性表現 98 4-3-4 薄膜表面形貌分析 100 4-3-4 即時量測(real time)汲極電流與膜厚相依性 101 4-4 互補式有機場效電晶體反相器(complementary organic inverter) 103 Chapter5 結論與未來展望 106 5-1 結論 106 5-2 未來展望 107 參考文獻 108 附錄 128

[1] M. Pope and C. E. Sweberg, “Electronic Process in Organic Crystals,” Clarendon, New York, (1982).
[2] 蕭宏著, 羅正忠 and 張鼎張譯, “ 半導體製程技術導論,” 歐亞書局有限公司,(2007)。
[3] R. B. Campbell, J. M. Robertson and J. Trotter, “The crystal structure of hexacene, and a revision of the crystallographic data for tetracene,” Acta Cryst., 15, 289 (1962).
[4] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater., 14, 99 (2002).
[5] P. Lin and F. Yan, “Organic Thin-Film Transistors for Chemical and Biological Sensing,” Adv. Mater., 24, 34 (2012).
[6] H. U. Khan, J. Jang, J.-J. Kim and W. Knoll, “Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media,” Biosens. Bioelectron., 26, 4217 (2011).
[7] L. Jagannathan and V. Subramanian, “DNA detection using organic thin film transistors: Optimization of DNA immobilization and sensor sensitivity,” Biosens. Bioelectron., 25, 288 (2009).
[8] N. F. Matt and R. W. Gurney, “Electronic Process in Ionic Crystals,” Clarendon Press, Oxford, U. K., (1940).
[9] J. Roncali, “Conjugated poly(thiophenes): synthesis, functionalization, and applications,” Chem. Rev., 92, 711 (1992).
[10] H. Koezuka, A. Tsumura and T. Ando, “Field-effect transistor with polythiophene thin film,” Synth. Metals, 18, 699 (1987).
[11] A. Tsumura, H. Koezuka and T. Ando, “Polythiophene field-effect transistor: Its characteristics and operation mechanism,” Synth. Metals, 25, 11 (1988).
[12] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
[13] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., 48, 183 (1986).
[14] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, 1210 (1986).
[15] G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater., 10, 365 (1998).
[16] Z. Bao and J. Locklin, “Organic Filed Effect Transistors
” CRC Press, New York., (2007).
[17] B. Crone, A. Dodabalapur, J. Rogers, S. Martin, R. Filas, L. Yen-Yi, Z. Bao, R. Sarpeshkar, L. Wenjie and H. Katz, “Novel fabrication methods and characteristics of organic complementary circuits,” Electron Devices Meeting, 1999. IEDM Technical Digest. International, 115 (1999).
[18] S. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe and P. Heremans, “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags,” J. Appl. Phys., 99, 114519 (2006).
[19] R. Hattori, S. Yamada, Y. Masuda, N. Nihei and R. Sakurai, “A quick-response liquid-powder display (QR-LPD[registered sign]) with plastic substrate,” J. Soc. Inf. Disp., 12, 405 (2004).
[20] L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park and T. N. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett., 88, 083502 (2006).
[21] A. Dodabalapur, “Organic and polymer transistors for electronics,” Materials Today, 9, 24 (2006).
[22] C. Melzer and H. Seggern, “Organic Field-Effect Transistors for CMOS Devices, Organic Electronics,” 223, 189 (2010).
[23] Y. Shirota and H. Kageyama, “Charge Carrier Transporting Molecular Materials and Their Applications in Devices,” Chem. Rev., 107, 953 (2007).
[24] Simon M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices, 3rd Edition,” Wiley, (2006).
[25] T. Mori, “Molecular materials for organic field-effect transistors,” J. Phys-Condens. Mat., 20, 184010 (2008).
[26] Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Dev. Lett., 18, 606 (1997).
[27] Y. Chen and I. Shih, “High mobility organic thin film transistors based on monocrystalline rubrene films grown by low pressure hot wall deposition,” Appl. Phys. Lett., 94, 083304 (2009).
[28] O. D. Jurchescu, J. Baas and T. T. M. Palstra, “Effect of impurities on the mobility of single crystal pentacene,” Appl. Phys. Lett., 84, 3061 (2004).
[29] Y. Jang, W. H. Lee, Y. D. Park, D. Kwak, J. H. Cho and K. Cho, “High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators,” Appl. Phys. Lett., 94, 183301 (2009).
[30] M. Kitamura, Y. Kuzumoto, S. Aomori, M. Kamura, J. H. Na and Y. Arakawa, “Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes,” Appl. Phys. Lett., 94, 083310 (2009).
[31] C.-S. Chuang, J.-A. Cheng, Y.-J. Huang, H.-F. Chang, F.-C. Chen and H.-P. D. Shieh, “Organic thin-film transistors with color filtering functional gate insulators,” Appl. Phys. Lett., 93, 053305 (2008).
[32] A. Dodabalapur, “Semiconductor technology: Negatively successful,” Nature, 434, 151 (2005).
[33] B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, “Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport,” J. Am. Chem. Soc., 129, 15259 (2007).
[34] G. Gelinck, P. Heremans, K. Nomoto and T. D. Anthopoulos, “Organic Transistors in Optical Displays and Microelectronic Applications,” Adv. Mater., 22, 3778 (2010).
[35] H. Klauk, M. Halik, U. Zschieschang, G. n. Schmid, W. Radlik and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., 92, 5259 (2002).
[36] M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner and B. Batlogg, “Stable complementary inverters with organic field-effect transistors on Cytop fluoropolymer gate dielectric,” Appl. Phys. Lett., 94, 053303 (2009).
[37] Y. Jung, K.-J. Baeg, D.-Y. Kim, T. Someya and S. Y. Park, “A thermally resistant and air-stable n-type organic semiconductor: Naphthalene diimide of 3,5-bis-trifluoromethyl aniline,” Synth. Metals, 159, 2117 (2009).
[38] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction,” J. Am. Chem. Soc., 126, 4084 (2004).
[39] J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, “Morphological Origin of High Mobility in Pentacene Thin-Film Transistors,” Chem. Mater., 8, 2542 (1996).
[40] A. R. Brown, A. Pomp, C. M. Hart and D. M. de Leeuw, “Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators,” Science, 270, 972 (1995).
[41] J. Schon, S. Berg, C. Kloc and B. Batlogg, “Ambipolar pentacene field-effect transistors and inverters,” Science, 287, 1022 (2000).
[42] T. Yasuda, T. Goto, K. Fujita and T. Tsutsui, “Ambipolar pentacene field-effect transistors with calcium source-drain electrodes,” Appl. Phys. Lett., 85, 2098 (2004).
[43] J. G. Laquindanum, H. E. Katz, A. Dodabalapur and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” J. Am. Chem. Soc., 118, 11331 (1996).
[44] H. E. Katz, J. Johnson, A. J. Lovinger and W. Li, “Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors:  Structural Variation and Thiol-Enhanced Gold Contacts,” J. Am. Chem. Soc., 122, 7787 (2000).
[45] C.-C. Kao, P. Lin, C.-C. Lee, Y.-K. Wang, J.-C. Ho and Y.-Y. Shen, “High-performance bottom-contact devices based on an air-stable n-type organic semiconductor N,N-bis (4-trifluoromethoxybenzyl)-1,4,5,8-naphthalene-tetracarboxylic di-imide,” Appl. Phys. Lett., 90, 212101 (2007).
[46] S. Tanida, K. Noda, H. Kawabata and K. Matsushige, “N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer,” Thin Solid Films, 518, 571 (2009).
[47] B. J. Jung, K. Lee, J. Sun, A. G. Andreou and H. E. Katz, “Air-Operable, High-Mobility Organic Transistors with Semifluorinated Side Chains and Unsubstituted Naphthalenetetracarboxylic Diimide Cores: High Mobility and Environmental and Bias Stress Stability from the Perfluorooctylpropyl Side Chain,” Adv. Funct. Mater., 20, 2930 (2010).
[48] S.-W. Liu, C.-C. Lee, J.-M. Wen and C.-T. Chen, “In situ vacuum measurement of the thickness dependence of electron mobility in naphthalenetetracarboxylic diimide-based field-effect transistors,” Appl. Phys. Lett., 98, 023306 (2011).
[49] C. Tozlu, S. Erten-Ela and S. Icli, “Photoresponsive n-channel organic field effect transistor based on naphthalene bis-benzimidazole with divinyltetramethyl disiloxane-bis (benzo-cyclobutene) gate insulator,” Sensor. Actuat. A-Phys., 161, 46 (2010).
[50] A. Dodabalapur, L. Torsi and H. Katz, “Organic transistors: two-dimensional transport and improved electrical characteristics,” Science, 268, 270 (1995).
[51] F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini and D. de Leeuw, “Spatially Correlated Charge Transport in Organic Thin Film Transistors,” Phys. Rev. Lett., 92, 116802 (2004).
[52] S.-W. Liu, C.-C. Lee, H.-L. Tai, J.-M. Wen, J.-H. Lee and C.-T. Chen, “In situ Electrical Characterization of the Thickness Dependence of Organic Field-Effect Transistors with 1−20 Molecular Monolayer of Pentacene,” ACS Appl. Materials& Interfances, 2, 2282 (2010).
[53] M. Kiguchi, M. Nakayama, T. Shimada and K. Saiki, “Electric-field-induced charge injection or exhaustion in organic thin film transistor,” Phys. Rev. B, 71, 035332 (2005).
[54] R. Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors,” Adv. Mater., 17, 1795 (2005).
[55] T. Muck, V. Wagner, U. Bass, M. Leufgen, J. Geurts and L. Molenkamp, “In situ electrical characterization of DH4T field-effect transistors,” Synth. Metals, 146, 317 (2004).
[56] J. Gao, J. B. Xu, M. Zhu, N. Ke and D. Ma, “Thickness dependence of mobility in CuPc thin film on amorphous SiO2 substrate,” J. Phys. D: Appl. Phys., 40, 5666 (2007).
[57] R. Hayakawa, M. Petit, T. Chikyow and Y. Wakayama, “Analysis of carrier transport in quaterrylene thin film transistors formed by ultraslow vacuum deposition,” J. Appl. Phys., 104, 024506 (2008).
[58] M. Fiebig, D. Beckmeier and B. Nickel, “Thickness-dependent in situ studies of trap states in pentacene thin film transistors,” Appl. Phys. Lett., 96, 083304 (2010).
[59] M. Kraus, S. Haug, W. Brutting and A. Opitz, “Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer,” Org. Electron., 12, 731 (2011).
[60] M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada and K. Saiki, “Accumulation and Depletion Layer Thicknesses in Organic Field Effect Transistors,” Jpn. J. Appl. Phys., 42, L1408 (2003).
[61] A. Shehu, S. D. Quiroga, P. D’Angelo, C. Albonetti, F. Borgatti, M. Murgia, A. Scorzoni, P. Stoliar and F. Biscarini, “Layered Distribution of Charge Carriers in Organic Thin Film Transistors,” Phys. Rev. Lett., 104, 246602 (2010).
[62] C. Keil and D. Schlettwein, “Development of the field-effect mobility in thin films of F16PcCu characterized by electrical in situ measurements during device preparation,” Org. Electron., 12, 1376 (2011).
[63] A. Dodabalapur, J. Laquindanum, H. E. Katz and Z. Bao, “Complementary circuits with organic transistors,” Appl. Phys. Lett., 69, 4227 (1996).
[64] E. B. Namdas, I. D. W. Samuel, D. Shukla, D. M. Meyer, Y. Sun, B. B. Y. Hsu, D. Moses and A. J. Heeger, “Organic light emitting complementary inverters,” Appl. Phys. Lett., 96, 043304 (2010).
[65] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. Montaigne Ramil, H. Sitter, M. Colle and D. M. de Leeuw, “High performance n-channel organic field-effect transistors and ring oscillators based on C[sub 60] fullerene films,” Appl. Phys. Lett., 89, 213504 (2006).
[66] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer and G. Horowitz, “Organic inverter circuits employing ambipolar pentacene field-effect transistors,” Appl. Phys. Lett., 89, 033512 (2006).
[67] D. Bode, K. Myny, B. Verreet, B. van der Putten, P. Bakalov, S. Steudel, S. Smout, P. Vicca, J. Genoe and P. Heremans, “Organic complementary oscillators with stage-delays below 1 μs,” Appl. Phys. Lett., 96, 133307 (2010).
[68] D. A. Neamen, “Microelectronics : circuit analysis and design,” McGraw-Hill, New York, (2007).
[69] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432, 488 (2004).
[70] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, J. W. Kim, C. Y. G. Lee, J. Kim, S. I. Kim, Y. S. Park, S. Y. Lee and J. M. K, IDW, AMD 9-3
(2007).
[71] M. L. Chabinyc and A. Salleo, “Materials Requirements and Fabrication of Active Matrix Arrays of Organic Thin-Film Transistors for Displays,” Chem. Mater., 16, 4509 (2004).
[72] M. M. Ling and Z. Bao, “Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors,” Chem. Mater., 16, 4824 (2004).
[73] E. Gomar-Nadal, B. R. Conrad, W. G. Cullen and E. D. Willams, “Effect of Impurities on Pentacene Thin Film Growth for Field-Effect Transistors,” J. Phys. Chem. C, 112, 5646 (2008).
[74] M. Shtein, J. Mapel, J. B. Benziger and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett., 81, 268 (2002).
[75] P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, “Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature,” J. Appl. Phys., 96, 7312 (2004).
[76] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta and G. G. Malliaras, “Pentacene Thin Film Growth,” Chem. Mater., 16, 4497 (2004).
[77] S. E. Fritz, T. W. Kelley and C. D. Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer,” J. Phys. Chem. B, 109, 10574 (2005).
[78] F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, F. Biscarini, R. Zamboni, P. Heremans and M. Muccini, “Morphology and Field-Effect-Transistor Mobility in Tetracene Thin Films,” Adv. Funct. Mater., 15, 375 (2005).
[79] Q. Qi, Y. Jiang, A. Yu, X. Qiu and C. Jiang, “Enhancement of Electrical Conductance for Pentacene Thin Film Transistor by Controlling an Initial Layer-by-Layer Growth Mode Directly on SiO2Insulator,” Jpn. J. Appl. Phys., 48, 04C164 (2009).
[80] S. Verlaak and P. Heremans, “Molecular microelectrostatic view on electronic states near pentacene grain boundaries,” Phys. Rev. B, 75, 115127 (2007).
[81] S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi and J. X. Tang, “Contact resistance instability in pentacene thin film transistors induced by ambient gases,” Appl. Phys. Lett., 94, 083309 (2009).
[82] S. D. Wang, T. Minari, T. Miyadera, Y. Aoyagi and K. Tsukagoshi, “Bias stress instability in pentacene thin film transistors: Contact resistance change and channel threshold voltage shift,” Appl. Phys. Lett., 92, 063305 (2008).
[83] S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi and Y. Aoyagi, “Contact-metal dependent current injection in pentacene thin-film transistors,” Appl. Phys. Lett., 91, 203508 (2007).
[84] D. Knipp, R. A. Street, A. Volkel and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport,” J. Appl. Phys., 93, 347 (2003).
[85] W. Meyer and H. Neldel, Z. Tech. Phys. (Leipzig), 12, 588 (1937).
[86] K. P. Puntambekar, P. V. Pesavento and C. D. Frisbie, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy,” Appl. Phys. Lett., 83, 5539 (2003).
[87] H. Ishii, K. Sugiyama, E. Ito and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Adv. Mater., 11, 605 (1999).
[88] W.-K. Kim and J.-L. Lee, “Effect of oxygen plasma treatment on reduction of contact resistivity at pentacene/Au interface,” Appl. Phys. Lett., 88, 262102 (2006).
[89] E. L. Granstrom and C. D. Frisbie, “Field Effect Conductance Measurements on Thin Crystals of Sexithiophene,” J. Phys. Chem. B, 103, 8842 (1999).
[90] P. Ribič, V. Kalihari, C. Frisbie and G. Bratina, “Growth of ultrathin pentacene films on polymeric substrates,” Phys. Rev. B, 80, 115307 (2009).
[91] S. J. Kang, “Influence of postannealing on polycrystalline pentacene thin film transistor,” J. Appl. Phys., 95, 2293 (2004).
[92] S. Verlaak, S. Steudel, P. Heremans, D. Janssen and M. Deleuze, “Nucleation of organic semiconductors on inert substrates,” Phys. Rev. B, 68, 195409 (2003).
[93] M. H. Choo, J. H. Kim and S. Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors,” Appl. Phys. Lett., 81, 4640 (2002).
[94] M. H. Choo, W. S. Hong and S. Im, “Characterization of pentacene organic thin film transistors fabricated on SiNx films by non-photolithographic processes,” Thin Solid Films, 420-421, 492 (2002).
[95] T. Itoh and N. Yamauchi, “Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms,” Appl. Surf. Sci., 253, 6196 (2007).
[96] H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim and K. Cho, “Enhancement of Interconnectivity in the Channels of Pentacene Thin-Film Transistors and Its Effect on Field-Effect Mobility,” Adv. Funct. Mater., 16, 1859 (2006).
[97] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga and M. Hajlaoui, “The Concept of “Threshold Voltage in Organic Field-Effect Transistors,” Adv. Mater., 10, 923 (1998).
[98] R. Schroeder, L. A. Majewski and M. Grell, “A study of the threshold voltage in pentacene organic field-effect transistors,” Appl. Phys. Lett., 83, 3201 (2003).
[99] N. J. Watkins, L. Yan and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals,” Appl. Phys. Lett., 80, 4384 (2002).
[100] S.-W. Liu, C.-C. Lee, H.-L. Tai, J.-M. Wen and C.-T. Chen, “In situ probing thickness dependence of the field effect mobility of naphthalenetetracarboxylic diimide-based field effect transistors,” 77780X (2010).
[101] H. Wada and T. Mori, “High-resolution transparent carbon electrodes for organic field-effect transistors patterned by laser sintering,” Appl. Phys. Lett., 95, 253307 (2009).
[102] D. R. Lenski, A. Southard and M. S. Fuhrer, “Frequency-dependent complex conductivity of an organic thin-film transistor,” Appl. Phys. Lett., 94, 232103 (2009).
[103] P. Parisse, M. Passacantando, S. Picozzi and L. Ottaviano, “Conductivity of the thin film phase of pentacene,” Org. Electron., 7, 403 (2006).
[104] J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino and S. Mohialdin Khaffaf, “Low-k Insulators as the Choice of Dielectrics in Organic Field-Effect Transistors,” Adv. Funct. Mater., 13, 199 (2003).
[105] S. Pratontep, M. Brinkmann, F. Nuesch and L. Zuppiroli, “Correlated growth in ultrathin pentacene films on silicon oxide: Effect of deposition rate,” Phys. Rev. B, 69, 165201 (2004).
[106] S. Pratontep, M. Brinkmann, F. Nuesch and L. Zuppiroli, “Nucleation and growth of ultrathin pentacene films on silicon dioxide: effect of deposition rate and substrate temperature,” Synth. Metals, 146, 387 (2004).
[107] L. B. Roberson, J. Kowalik, L. M. Tolbert, C. Kloc, R. Zeis, X. Chi, R. Fleming and C. Wilkins, “Pentacene Disproportionation during Sublimation for Field-Effect Transistors,” J. Am. Chem. Soc., 127, 3069 (2005).
[108] I. Salzmann, S. Duhm, R. Opitz, J. r. P. Rabe and N. Koch, “Impact of low 6,13-pentacenequinone concentration on pentacene thin film growth,” Appl. Phys. Lett., 91, 051919 (2007).
[109] B. Conrad, E. Gomar-Nadal, W. Cullen, A. Pimpinelli, T. Einstein and E. Williams, “Effect of impurities on pentacene island nucleation,” Phys. Rev. B, 77 (2008).
[110] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, “Large-scale complementary integrated circuits based on organic transistors,” Nature, 403, 521 (2000).
[111] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature, 404, 478 (2000).
[112] V. Percec, G. Johansson, G. Ungar and J. Zhou, “Fluorophobic Effect Induces the Self-Assembly of Semifluorinated Tapered Monodendrons Containing Crown Ethers into Supramolecular Columnar Dendrimers Which Exhibit a Homeotropic Hexagonal Columnar Liquid Crystalline Phase,” J. Am. Chem. Soc., 118, 9855 (1996).
[113] M.-m. Ling, Z. Bao, P. Erk, M. Koenemann and M. Gomez, “Complementary inverter using high mobility air-stable perylene di-imide derivatives,” Appl. Phys. Lett., 90, 093508 (2007).
[114] J. C. Ribierre, K. Takaishi, T. Muto and T. Aoyama, “Flexible organic field-effect transistors and complementary inverters based on a solution-processable quinoidal oligothiophene derivative,” Opt. Mater., 33, 1415 (2011).

QR CODE