簡易檢索 / 詳目顯示

研究生: 張瑞勳
RUEI-SYUN JHANG
論文名稱: 三維分析加勁土堤受側向力之研究
Three-Dimensional Finite Element Modeling of Geosynthetic-Reinforced Soil Structure subject to Lateral Loadings
指導教授: 鄧福宸
Fu-chen Teng
楊國鑫
Kuo-Hsin Yang
口試委員: 鄧福宸
Fu-chen Teng
楊國鑫
Kuo-Hsin Yang
李安叡
An-Jui Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 123
中文關鍵詞: 加勁土堤3D 有限元素分析側向力破壞模式
外文關鍵詞: geosynthetic-reinforced-soil pier, 3D finite element, lateral loadings,, failure mode
相關次數: 點閱:267下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

加勁擋土結構物已廣泛地運用於各種擋土工程,適合各種地形變化、排碳量低,且能承受較大的牆體變位。加勁擋土結構物除了傳統應用上用於承受垂直的荷載之外,由於近幾年來因為氣候型態的改變,
自然災害頻傳,像是洪水、海嘯、土石流及雪崩等,世界各地也逐漸將加勁擋土結構物作為抵抗天然災害引致之側向外力。
本研究先以PLAXIS 3D 針對Shinoda et al. (2003)所建造的加勁土堤受側向推力作用進行基準模型建置。後續以三種不同牆面厚度及兩種側向力來作參數分析,並探討在上述不同條件下,加勁擋土牆結構物其力學行為、破壞型式及內部加勁材之受力狀況。


Geosynthetics-reinforced soil (GRS) structures are now widely used in various engineering projects. Numerous factors have fostered the acceptance of MSE retaining structures such as the suitability for various terrains, low carbon emission, and considerable ability to withstand sizeable deformations without structural distress. In addition to selfweight and vertical surcharge, GRS structures have also been used recently as barriers to resist lateral forces from natural disasters, such as floods, tsunamis, rockfalls, debris flows, and avalanches.
In this thesis, a 3D finite element (FE) model of a back-to-back GRS wall subjected to lateral loadings was first developed and validated using the physical model test results reported by Shinoda et al. (2003). After the model was validated, a series of parametric studies was conducted to evaluate the influence of facing thickness and loading types on the mechanical behavior, failure mode, and mobilization of reinforcement tensile loads of the GRS wall. The finding and results obtained from this study were discussed.

論文摘要...................................................................... I Abstract .....................................................................II 致謝..........................................................................III 目錄.......................................................................... IV 表目錄........................................................................ VI 圖目錄.......................................................................VIII 第一章緒論......................................................................1 1.1 前言.......................................................................1 1.2 研究動機與目的...............................................................3 1.3 研究方法....................................................................7 1.4 論文架構....................................................................8 第二章文獻回顧 .................................................................10 2.1 加勁擋土牆之穩定性..........................................................10 2.1.1 加勁擋土結構物之外部穩定..................................................11 2.1.2 加勁擋土結構物之內部穩定..................................................14 2.2 數值分析於加勁擋土牆之應用..................................................16 2.3 擋土牆受側推力之相關研究.....................................................20 第三章數值分析與驗證.............................................................24 3.1 加勁擋土牆試驗介紹..........................................................24 3.2 數值分析方法................................................................30 3.2.1 分析軟體.................................................................30 3.2.2 分析模式.................................................................30 3.2.3 回填土本構模型............................................................31 3.2.4 界面元素.................................................................37 3.2.5 邊界條件設定.............................................................44 3.3 數值驗證...................................................................45 第四章參數分析與結果探討........................................................59 4.1 參數分析說明................................................................59 4.1.1 頂部側向力(Top Surface Load) .............................................63 4.1.2 線性分佈力(Linear Distribution Load) ..................................65 4.2 加勁材最大側向位移.........................................................67 4.2.1 頂部側向力(Top Surface Load) .............................................68 4.2.2 線性分佈力(Linear Distribution Load) ..................................71 4.2.3 未加加勁材之最大側向變位..................................................75 4.3 加勁材之受力狀況............................................................77 4.3.1 頂部側向力(Top Surface Load) .............................................77 4.3.2 線性分佈力(Linear Distribution Load) ..................................86 4.4 力學機制與破壞模式..........................................................97 4.4.1 牆內應力.................................................................97 4.4.2 牆體位移................................................................99 4.4.3 破壞模式...............................................................104 第五章結論與建議 .............................................................118 5.1 結論......................................................................118 5.2 建議.....................................................................119 參考文獻.....................................................................120

1. AASHTO. (2002). Standard specifications for highway bridges. American Association of State Highway and Transportation Officials.”, 17th ed., Washington, D.C.

2. Administration, U. S. D. o. T. F. H. (2009). Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes. I.

3. Association, N. C. M. (2009). Specification for Design and Construction of Load-Bearing Masonry. National Concrete Masonry Association (NCMA).

4. Berg, R., Christopher, B. R., and Samtani, N. (2009). Design of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes. National Highway Institute, Federal Highway Administration, Washington, D.C. U.S.A., I and II.

5. Brandl, H. (2011). Geosynthetics applications for the mitigation of natural disasters and for environmental protection. Geosynthetics International, 18(6), 340-390.

6. Descoeudres, F. (1997). Aspects ge´ome´caniques des instabilite´s de falaises rocheuses et des chutes de blocs. Mitteilungen der Schweizerischen Gesellschaft fu¨r Boden und Felsmechanik, Montreux, Switzerland (in French).

7. Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div., ASCE, 96, 1629-1653.

8. Elias, V., Christopher, B. R., and Berg, R. R. (2001). Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines. National Highway Institute, Federal Highway Administration, Washington, D.C. U.S.A.

9. Guler, E., Cicek, E., Demirkan, M. M., & Hamderi, M. (2012). Numerical analysis of reinforced soil walls with granular and cohesive backfills under cyclic loads. Bulletin of Earthquake Engineering, 10(3), 793-811.

10. Han, J., & Leshchinsky, D. (2010). Analysis of back-to-back mechanically stabilized earth walls. Geotextiles and Geomembranes, 28(3), 262-267. 121

11. Hatami, K., & Bathurst, R. J. (2005). Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Canadian Geotechnical Journal, 42(4), 1066-1085.

12. Hatami, K., & Bathurst, R. J. (2006). Numerical Model for Reinforced Soil Segmental Walls under Surcharge Loading. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 673- 684.

13. Huang, B., Bathurst, R. J., & Hatami, K. (2009). Numerical Study of Reinforced Soil Segmental Walls Using Three Different Constitutive Soil Models. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1486-1498.

14. Huang, C.-C., & Chen, Y. S. (2012). Behavior of reinforced structures under simulated toe scouring (Vol. 19).

15. Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. Proc. ECSMFE Wiesbaden, 1, 19-25.

16. Karpurapu, R., & Bathurst, R. J. (1995). Behaviour of geosynthetic reinforced soil retaining walls using the finite element method. Computers and Geotechnics, 17(3), 279-299.

17. Khalilzad, M., & Gabr, M. A. (2011). External Stability of Geotubes Subjected to Wave Loading GeoRisk 2011.

18. Kondner, R. L. (1963). Hyperbolic stress-strain response: cohesive soils. J. Geotech. Engrg. Div., 89(1), 115-143.

19. Kuwano, J., Koseki, J. and Miyata, Y. (2012). Performance of reinforced soil walls in the 2011 Tohoku Earthquake. Proc. 5th Asian Regional Conference on Geosynthetics, 85-94.

20. Leshchinsky, D., & Han, J. (2004). Geosynthetic Reinforced Multitiered Walls. Journal of Geotechnical & Geoenvironmental Engineering, 130(12), 1225-1235.

21. PLAXIS, B. V. (2013). PLAXIS 3D Manual. The Netherlands.

22. Ronco, C., Oggeri, C., & Peila, D. (2009). Design of reinforced ground embankments used for rockfall protection. Natural Hazards and Earth System Sciences, 9(4), 1189.

23. Schanz, T., Vermer, P. A., & Bonnier, P. G. (1999). The hardening soil model: formulation and verification. 122

24. Shinoda, M., Uchimura, T., & Tatsuoka, F. (2003a). INCREASING THE STIFFNESS OF MECHANICALLY REINFORCED BACKFILL BY PRELOADING AND PRESTRESSING. 地盤工学会論文報告集, 43(1), 75-92.

25. Shinoda, M., Uchimura, T., & Tatsuoka, F. (2003b). IMPROVING THE DYNAMIC PERFORMANCE OF PRELOADED AND PRESTRESSED MECHANICALLY REINFORCED BACKFILL BY USING A RATCHET CONNECTION. 地盤工学会論文報告 集, 43(2), 33-54.

26. Society, J. G. (2011). Geo-hazards During Earthquakes and Mitigation Measures-lessons and Recommendations from the 2011 Great East Japan Earthquake. 84.

27. Tatsuoka, F., Tateyama, M., Koseki, J., & Yonezawa, T. (2014). Geosynthetic-Reinforced Soil Structures for Railways in Japan. Transportation Infrastructure Geotechnology, 1(1), 3-53.

28. Uchimura, T., Tamura, Y., Takeyama, M., Tanaka, I., & Tatsuoka, F. (2005). VERTICAL AND HORIZONTAL LOADING TESTS ON FULL-SCALE PRELOADED AND PRESTRESSED GEOGRIDREINFORCED SOIL STRUCTURES. 地盤工学会論文報告集, 45(6), 75-88.

29. Uchimura, T., Tateyama, M., Tanaka, I., & Tatsuoka, F. (2003). PERFORMANCE OF A PRELOADED-PRESTRESSED GEOGRID-REINFORCED SOIL PIER FOR A RAILWAY BRIDGE. 地盤工学会論文報告集, 43(6), 155-171.

30. von Soos, P. (1990). Properties of soil and rock (in german). In In: Grindbautaschenbuch Part 4. Ernst & Sohn, Berlin.

31. Wu, J. T., Yang, K.-h., Mohamed, S., Pham, T., & Chen, R.-h. (2014). Suppression of Soil Dilation--A Reinforcing Mechanism of Soil- Geosynthetic Composites. Transportation Infrastructure Geotechnology, 1(1), 68-82.

32. Wu, J. T. H., & Pham, T. Q. (2013). Load-Carrying Capacity and Required Reinforcement Strength of Closely Spaced Soil- Geosynthetic Composites. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1468-1476.

33. Yang, K.-H., Wu, J. T. H., Chen, R.-H., & Chen, Y.-S. (2016). Lateral bearing capacity and failure mode of geosynthetic-reinforced 123 soil barriers subject to lateral loadings. Geotextiles and Geomembranes, 44(6), 799-812.

34. Yang, K. H., Utomo, P., & Liu, T. L. (2013). Evaluation of forceequilibrium and deformation-based design approaches for predicting reinforcement loads within geosyntheticreinforced soil structures. Journal of GeoEngineering, 8(2), 41-54.

35. 內政部營建署. (2008). 台灣加勁擋土牆設計及施工規範.

36. 李如霞工作室. (2016). 新編交通工程精粹. 台灣: 士明.

QR CODE