簡易檢索 / 詳目顯示

研究生: 蕭世揚
Shih-Yang Hsiao
論文名稱: 全固態鈉電池之硫化物玻璃離子導電率量測及可能陰極組成
Ion conductivities of sulfide glasses for all-solid-state sodium battery and potential cathode compositions
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 李奎毅
Kuei-Yi Lee
許貫中
Kung-Chung Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 固態電解質硫化鈉五硫化二磷丙胺正極材料升溫條件降溫條件離子導電率
外文關鍵詞: solid electrolyte, sodium sulfide, phosphorous pentasulfide, propylamine, cathode, heating ramp, cooling ramp, ion conductivity
相關次數: 點閱:370下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究中,我們以丙胺(propylamine)當作溶劑,溶解並混合硫化鈉(Na2S)和五硫化二磷(P2S5),達到分子層面均勻,再單軸加壓(469 MPa)製成玻璃。這種製備方式不同於文獻的製備法,文獻以反應性球磨方式合成玻璃電解質或玻璃陶瓷電解質的方法。
室溫加壓製備之xNa2S.(100-x)P2S5(x=75、80),樣品的X光繞射圖譜,低角度有極寬的兩個繞射,與極少數低強度未知繞射,顯示他們都是玻璃質。若加熱至270 C,樣品的X光繞射圖譜顯示Na3PS4立方相晶體繞射特徵,顯示高量鈉的硫化物玻璃容易結晶。此外,我們也以固態反應合成NaFe(SO4)2, NaCrO2,此二化合物可能作為鈉電池正極。
比較不同溫度下xNa2S.(100-x)P2S5(x=75、80)、75 Na2S.25P2S5(升溫至270 oC)三種固態電解質的鈉離子導電率。75 Na2S.25P2S5在升溫條件量測,得30 oC離子導電率為4.8 x 10-7 S cm-1,200 oC離子導電率為1.9 x 10-3 S cm-1。降溫條件量測,得30 oC離子導電率為2.0 x 10-6 S cm-1,200 oC離子導電率為1.3 x 10-3 S cm-1。
80Na2S.20P2S5在升溫條件量測,得33 oC離子導電率為1.2 x 10-7 S cm-1,200 oC離子導電率為1.6 x 10-3 S cm-1。降溫條件量測,得33 oC離子導電率為4.3 x 10-7 S cm-1,200 oC離子導電率為1.5 x 10-3 S cm-1。
Na3PS4立方晶體在升溫條件量測,得33 oC離子導電率為7.3 x 10-6 S cm-1,200 oC離子導電率為2.1 x 10-3 S cm-1¬。降溫條件量測,得33 oC離子導電率為2.3 x 10-6 S cm-1,200 oC離子導電率為8.4 x 10-4 S cm-1。
而正極材料NaCrO2在升溫條件量測,得35 oC離子導電率為3.8 x 10-9 S cm-1,140 oC離子導電率為1.8 x 10-7 S cm-1。 NaFe(SO4)2在升溫條件量測,得100 oC離子導電率為2 x 10-9 S cm-1,160 oC離子導電率為3.6 x 10-8 S cm-1。


Unlike the conventional milling method of preparing glasses and glass-ceramic, we implement a different way to make the sulfite glasses. In this study, we use propylamine as a solvent to dissolve the starting materials of Na2S and P2S5. Through the dissolution process, the obtained powder achieves composition homogeneity at the molecular level. Then we press the powder with uniaxial force(469 MPa) to form glass.
The X-ray diffraction patterns of xNa2S-(100-x)P2S5 (x=75,80) show two broad background diffractions at low angle and a few unknown peaks of low intensity which indicate they are amorphous. After heating the glassy sample of 75Na2S-25P2S5 at 270 oC, the sharp peaks in X-ray diffraction pattern emerge, matching the pattern of cubic Na3PS4 crystal. It seems that crystallization of sulfide glass is easy at such a high sodium content. In addition to glasses and glass-ceramic electrolyte, we also use solid-state reaction to synthesize NaFe(SO4)2 and NaCrO2. They are candidate compositions of sodium battery cathode.
After measuring electrical impedance of xNa2S-(100-x)P2S5
(x=75,80) and 75Na2S-25P2S5 which has been heated at 270 oC, we compare the sodium ion conductivity of the three solid electrolytes at different temperature. The ion conductivity of 75Na2S-25P2S5 is measured 4.8 x 10-7 S cm-1 at 30 oC and 1.9 x 10-3 S cm-1 at 200 oC in the heating ramp at a 20 oC interval. In the cooling ramp at a 10 oC interval, the ion conductivity is slight higher, measured 2.0 x 10-6 S cm-1 at 30 oC and 1.3 x 10-3 S cm-1 at 200 oC. For the composition of high sodium content, 80Na2S-20P2S5, the ion conductivity is measured 1.2 x 10-7 S cm-1 at 33 oC and 1.6 x 10-3 S cm-1 at 200 oC in the heating ramp. And the ion conductivity is 4.3 x 10-7 S cm-1 at 33 oC and 1.5 x 10-3 S cm-1 at 200 oC in the cooling ramp.
On the ion conductivity of Na3PS4, the ion conductivity is 7.3 x 10-6 S cm-1 at 33 oC and 2.1 x 10-3 S cm-1 at 200 oC in the heating ramp. And the ion conductivity is 2.3 x 10-6 S cm-1 at 33 oC and 8.4 x 10-4 S cm-1 at 200 oC in the cooling ramp.
On the ion conductivity of NaCrO2, the ion conductivity is 3.8 x 10-9 S cm-1 at 35 oC and 1.8 x 10-7 S cm-1 at 140 oC in the heating ramp. And the ion conductivity of NaFe(SO4)2 is 2 x 10-9 S cm-1 at 100 oC and 3.6 x 10-8 S cm-1 at 160 oC in the heating ramp.

摘 要 i ABSTRACT iii 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 4 2.1 鈉硫固態電解質電池 4 2.2 玻璃與玻璃陶瓷 4 2.3 含硫玻璃與玻璃陶瓷電解質 7 2.3.1 Na2S•P2S5玻璃陶瓷電解質 7 2.3.1.1 cubic Na3PS4 8 2.3.1.2 (100-x)Na3PS4•xNa4SiS4 10 2.3.1.3 xNaI•(100-x)Na3PS4 11 2.3.2 Na2S•P2S5玻璃電解質 12 2.3.3 Na2S•P2S5玻璃電解質合成方法 13 2.3.3.1 Melt-quenching 13 2.3.3.2 Mechanical milling 14 2.4 層狀結構的鈉離子電池正極材料 17 2.4.1 NaCrO2 18 2.4.2 NaCrO2合成方法 20 2.4.2.1 emulsion-drying method 20 2.4.2.2 calcination 20 2.4.3 NaFe(SO4)2 21 2.4.3.1 NaFe(SO4)2合成方法 23 第三章 實驗方法與步驟 24 3.1 實驗藥品及耗材 24 3.1.1固態電解質 24 3.1.2正極材料 24 3.1.2.1 NaCrO2 24 3.1.2.2 NaFe(SO4)2 25 3.1.2.3 電流收集器製作 26 3.1.2.4 其他藥品耗材與儀器設備 26 3.1.2.5 分析儀器 27 3.2 實驗方法 28 3.2.1 固態電解質合成 28 3.2.2 正極材料合成 29 3.2.2.1 NaFe(SO4)2 29 3.2.2.2 NaCrO2 30 3.2.3 固態電解質與正極材料的壓錠 31 3.2.4 石磨電極片之製備 34 3.2.5 電解質與正極材料組裝 34 3.2.6 交流阻抗量測(AC impedance measurement)流程 35 3.3 實驗方法 36 3.3.1 固態電解質合成方法 36 3.3.2 正極材料合成方法 36 3.3.2.1 NaFe(SO4)2 36 3.3.2.2 NaCrO2 37 3.3.3 固態電解質與正極材料壓錠與燒結 37 3.3.4 電極片切割與製備方法 38 3.3.5電解質與正極材料鑑定與分析 39 3.3.5.1 X光繞射分析 39 3.3.5.2 交流阻抗量測(AC impedance measurement)流程 39 第四章 結果與討論 42 4.1 XRD分析 42 4.1.1 固態電解質 42 4.1.2 正極材料 46 4.1.2.1 NaFe(SO4)2 46 4.1.2.2 NaCrO2 47 4.2 電化學交流阻抗分析 49 4.2.1 固態電解質 49 4.2.1.1 75Na2S•25P2S5 49 4.2.1.1.1升溫 49 4.2.1.1.2 降溫 52 4.2.1.2 80Na2S•20P2S5 56 4.2.1.2.1升溫 56 4.2.1.2.2 降溫 59 4.2.1.3 cubic Na3PS4 63 4.2.1.3.1升溫 63 4.2.1.3.2降溫 66 4.2.1.4 離子導電率比較 70 4.2.1.4.1 升溫 70 4.2.1.4.2 降溫 72 4.2.2 正極材料 73 4.2.2.1 NaCrO2 73 4.2.2.1.1升溫 73 4.2.2.2 NaFe(SO4)2 75 4.2.2.2.1 升溫 75 4.2.2.3 離子導電率比較 78 第五章 結論 79 參考文獻 80

參考文獻
1. Hayashi, A., et al., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na 3 PS 4. Journal of Power Sources, 2014. 258: p. 420-423.
2. Whittingham, M.S., Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Progress in Solid State Chemistry, 1978. 12(1): p. 41-99.
3. Newman, G.H. and L.P. Klemann, Ambient Temperature Cycling of an Na‐TiS2 Cell. Journal of The Electrochemical Society, 1980. 127(10): p. 2097-2099.
4. Abraham, K., Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics, 1982. 7(3): p. 199-212.
5. 駒場慎一, et al., ЮЬэヨуユレ⑦電池負極シ表面科学. 表面科学, 2013. 34(6): p. 303-308.
6. Coors, W.G., J.H. Gordon, and S.G. Menzer, Electrochemical cell comprising ionically conductive membrane and porous multiphase electrode. 2012, Google Patents.
7. Carmichael, R.S., Physical properties of rocks and minerals. 1989: CRC press Boca Raton.
8. Armand, M. and J.-M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
9. Noi, K., A. Hayashi, and M. Tatsumisago, Structure and properties of the Na 2 S–P 2 S 5 glasses and glass–ceramics prepared by mechanical milling. Journal of Power Sources, 2014. 269: p. 260-265.
10. Hayashi, A., et al., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature communications, 2012. 3: p. 856.
11. Tatsumisago, M., M. Nagao, and A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013. 1(1): p. 17-25.
12. Sakuda, A., A. Hayashi, and M. Tatsumisago, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Scientific reports, 2013. 3.
13. Cao, C., et al., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2014. 2: p. 25.
14. Seino, Y., et al., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 627-631.
15. Mizuno, F., et al., New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Advanced Materials, 2005. 17(7): p. 918-921.
16. Mizuno, F., et al., High lithium ion conducting glass-ceramics in the system Li 2 S–P 2 S 5. Solid State Ionics, 2006. 177(26): p. 2721-2725.
17. Ribes, M., B. Barrau, and J. Souquet, Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na 2 S- XS 2 (X= Si; Ge), Na 2 S- P 2 S 5 and Li 2 S- GeS 2 systems. Journal of Non-Crystalline Solids, 1980. 38: p. 271-276.
18. Tatsumisago, M. and A. Hayashi, Sulfide Glass‐Ceramic Electrolytes for All‐Solid‐State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014. 5(3): p. 226-235.
19. Tanibata, N., et al., X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅ 6 Na4SiS4 Glass‐Ceramic Electrolytes. ChemElectroChem, 2014. 1(7): p. 1130-1132.
20. Tanibata, N., et al., Preparation and characterization of highly sodium ion conducting Na 3 PS 4–Na 4 SiS 4 solid electrolytes. RSC Advances, 2014. 4(33): p. 17120-17123.
21. Hibi, Y., et al., Preparation of sodium ion conducting Na 3 PS 4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015. 270: p. 6-9.
22. Berbano, S.S., et al., Formation and structure of Na 2 S+ P 2 S 5 amorphous materials prepared by melt-quenching and mechanical milling. Journal of Non-Crystalline Solids, 2012. 358(1): p. 93-98.
23. Nose, M., et al., Evaluation of mechanical properties of Na 2 S–P 2 S 5 sulfide glass electrolytes. Journal of Materials Chemistry A, 2015. 3(44): p. 22061-22065.
24. Delmas, C., C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+ C, 1980. 99(1): p. 81-85.
25. Han, M.H., et al., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy & Environmental Science, 2015. 8(1): p. 81-102.
26. Komaba, S., et al., Electrochemical intercalation activity of layered NaCrO 2 vs. LiCrO 2. Electrochemistry Communications, 2010. 12(3): p. 355-358.
27. Xia, X. and J. Dahn, NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid-State Letters, 2011. 15(1): p. A1-A4.
28. Myung, S.-T. and H.-T. Chung, Preparation and characterization of LiMn 2 O 4 powders by the emulsion drying method. Journal of Power Sources, 1999. 84(1): p. 32-38.
29. Myung, S.-T., et al., Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method. Journal of applied electrochemistry, 2000. 30(9): p. 1081-1085.
30. Yu, C.-Y., et al., NaCrO 2 cathode for high-rate sodium-ion batteries. Energy & Environmental Science, 2015. 8(7): p. 2019-2026.
31. Singh, P., et al., Eldfellite, NaFe (SO 4) 2: an intercalation cathode host for low-cost Na-ion batteries. Energy & Environmental Science, 2015. 8(10): p. 3000-3005.
32. Zeng, Z., et al., Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment. Fuel, 2016. 178: p. 10-22.
33. Macdonald, D.D., Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8): p. 1376-1388.
34. Jha, P.K., O. Pandey, and K. Singh, Structural and thermal properties of Na 2 S–P 2 S 5 glass and glass ceramics. Journal of Non-Crystalline Solids, 2013. 379: p. 89-94.
35. Yubuchi, S., A. Hayashi, and M. Tatsumisago, Sodium-ion Conducting Na 3 PS 4 Electrolyte Synthesized via a Liquid-phase Process Using N-Methylformamide. Chemistry Letters, 2015. 44(7): p. 884-886.

QR CODE