簡易檢索 / 詳目顯示

研究生: 郭兆渝
Jhao-Yu Guo
論文名稱: 利用大氣式常壓電漿噴射束改質矽晶片表面以應用於單晶矽太陽能電池之織構化研究
Surface Modification on Silicon Wafers by Atmospheric Pressure Plasma Jet for Texturing Process of Monocrystalline Silicon Solar Cell
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 黃柏仁
Bohr-Ran Huang
黃駿
Chun Huang
李文仁
Wen-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 大氣式常壓電漿表面改質鹼性蝕刻液金字塔結構
外文關鍵詞: Atmospheric Pressure Plasma Jet, Surface modification, Alkaline etching solution, Pyramid structure
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由常壓電漿噴射束系統於矽晶片表面上進行粗糙化之動作,使用化學濕式蝕刻之鹼性蝕刻液進行蝕刻處理,將矽晶片表面形成織構化結構。並利用接觸角(Water Contact Angle)分析電漿處理後之表面特性、場發射掃描式電子顯微鏡(FE-SEM)觀看表面形貌、量測反射率之光譜圖以分析光進入樣品後之光吸收情況。
結果顯示電漿處理次數遞增、電漿至試片表面距離、電漿功率等參數將影響矽晶片表面之蝕刻結果,其中以功率350W、電漿處理試片距離為11 mm、電漿處理次數1次,蝕刻溫度為60ºC、蝕刻時間為3分鐘與五分鐘,相較於原始之矽晶片蝕刻有更好之效果,試片表面形貌之金字塔結構緊密相連,平均反射率約為5%。此結果證實,利用大氣式常壓電漿將表面轟擊至凹凸不平後再蝕刻,可以減少蝕刻時間、提升蝕刻速率、並延長蝕刻液之使用壽命。


Wet chemical etching was conducted to increase the surface roughness of the silicon wafers, and atmospheric pressure plasma jet was used by alkaline etching solution to achieve texture structure. The characteristic of surface after the plasma process was analyzed by Water Contact Angle (WCA), surface morphology observed by Field Emission Scanning Electron Microscopy (FE-SEM), and reflectivity data were measured to realize light absorption situation of the sample.
According to the results, the increasing scanning times, substrate to nozzle distance, and power of plasma would have an influence on the outcome of the etching silicon wafer on the surface. Among all of the conditions, when the power was 350W, the distance of substrate to nozzle was 11mm, and scanned for one time under etching at 60ºC for 3 and 5 minutes, the results would be much better compared to the original method for etching of the silicon wafers. The pyramid structures formed on the surface connected tightly, and the reflectivity average value was 5%. The results prove that when the surface was bombarded by atmospheric pressure plasma until the outlook became rugged followed by the etching process could reduce the etching time, elevate the etching rate, and extend the lifespan of the etching solution.

第一章 緒論 1 1.1 研究動機 1 1.2 研究動機 4 第二章 文獻回顧 5 2.1 太陽能電池 5 2.1.1太陽能電池之基本原理 5 2.1.2 矽之性質 6 2.1.3 半導體的定義 7 2.1.4 單晶矽之晶體方向 7 2.2 蝕刻 9 2.2.1 乾式蝕刻(Dry etch) 10 2.2.2 濕式蝕刻(Wet etch) 12 2.3 濕式反應機制與影響因素之非等向性蝕刻 16 2.3.1 非等向性(Anisotropy)蝕刻之機制 17 2.3.2 表面織構化 19 第三章 實驗材料與方法 20 3.1 研究設計 20 3.2 實驗材料 21 3.3 實驗儀器與參數 22 3.3.1常壓電漿 22 3.3.2 光學放射光譜儀 (OES) 23 3.3.3 場發射掃描式電子顯微鏡(FE-SEM) 25 3.3.4 接觸角量測(Contact Angle Analysis System) 26 3.3.5 反射率量測 29 3.4 實驗步驟 31 3.4.1 晶圓清洗 31 3.4.2 蝕刻液(Etching solution)製備 32 3.4.3 常壓電漿處理之過程 33 第四章 結果與討論 34 4.1 前言 34 4-2 電漿輝光OES分析 35 4.3選用蝕刻液之溫度 39 4.4 探討常壓電漿處理後之表面形貌 45 4.4.1電漿機制探討 50 4.4.2 表面處理後經50ºC與60ºC鹼液蝕刻 53 4.5電漿參數確定表面形貌觀察 57 4.5.1 蝕刻溫度設定50ºC 61 4.5.2 蝕刻溫度設定60ºC 75 4.5.3水接觸角分析 89 第五章 結論 91 第六章 未來展望 93 第七章 參考文獻 94

[1]鄒敏惠,全球暖化時代 聯合國:溫度上升恐不可逆轉,2014
[2]晁積企業有限公司,http://www.solar2money.com/
[3]G. Anderw, Solar and wind power cheaper than fossil fuels for the first time, Independent, 2017, http://www.independent.co.uk/
[4]International energy agency, 2014, http://www.iea.org/
[5]TSEC元晶太陽能科技股份有限公司,http://www.tsecpv.com/zh-tw
[6]黃惠良、蕭錫鍊、周明奇、林間楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,太陽電池,五南圖書出版股份有限公司, 2008,12
[7]顧鴻濤,太陽能電池原件導論:材料、元件、製程、系統,全威圖書出版股份有限公司,2009。
[8]G. Adolf, K. Joachim, V. Bernhard, Crystaline Silicon Solar Cells, John Wiley & Sons, 1994.
[9]R. C. Neville, Solar Energy Conversion: The Solar Cell, Elsevvier/North-Holland Inc., 1978.
[10]ENGINEERING.com, http://www.engineering.com
[11]丁元智,資源工程概論,全華科技圖書股份有限公司,1999,pp. 1~5。
[12]林明獻,矽晶圓半導體材料技術,全華科技圖書股份有限公司,2007,pp. 2-2~2-9。
[13]S. M. Sze, K. K. Ng, Semiconductor Devices Physics Technology, 2nd Edtion Jomm Wiley,2002, pp. 18.
[14]D. B. Lee, Anisotropic Etching of Silicon, Journal of Applied Physics (40), 1969, pp. 4569.
[15]Y. Nishi, R. Doering, Handbook of Semiconductor Manufacturing Technology, 2000, pp.39-40.
[16]蕭宏,半導體製程技術導論(修訂二版),全華圖書股份有限公司,2013,pp. 95-100。
[17]P. J. Holmes, The electrochemistry of semiconductors, Academic Press, 1962, pp. 329.
[18]L. Shon-Roy, A. Wiesnoski, R. Zorich, Handbook of Semiconductor Manufacturing Technology, 2000, pp.509-530
[19]蕭宏,半導體製程技術導論(修訂二版),全華圖書股份有限公司,2013,pp. 325-338
[20]Z. Liu, a, Y. T. Liu, Influence of silicon texturization on the photovoltaic properties of CuPc/n-Si hybrid solar cells, Engineering Materials (531-532), 2013, pp. 40-44.
[21]U. Gangopadhyay, K. Kim, S.K. Dhungel, P. K. Basu, Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells, Renewable Energy (31), 2005, pp. 1906-1915.
[22]A. Parretta, A. Saron, P. Tortora, H, Yakubu, P. Maddalean, J. Zhao, A. Wangc, Angle-dependent reflectance measurements on photovoltaic materials and solar cells, Optics Communications (172) 1999, pp.139-151.
[23]戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,2008,pp. 60-70。
[24]R.M. Finne, D.L. Klein, A Water-Amine-Complexing Agent System for Etching Silicon, Journal of The Electrochemical Society (114), 1967, pp. 965.
[25]H. Seidel, L. Csepregi, A. Heuberger, H. BaumgaK, Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, Journal of The Electrochemical Society (114), 1994, pp.965.
[26]D. Sontag, G. Hahn, P. Fath, E. Bucher, W. Krchler, Texturing techniques and resulting solar cell parameters on tri-silicon material, 3rd WCPEC (2), 2003, pp. 1304-1307.
[27]K.E. Bean, Anisotropic Etching of Silicon, IEEE Transactions on electron devices (25), 1918, pp.1185-1193.
[28]D.L. King, M.E. Buck, Proceedings of 22nd IEEE Photovoltaic Specialist Conference, IEEE, 1991, p. 303.
[29]C. P. Pakpum, Wet Etching Technique to Reduce Pyramidal Hillocks for Anisotropic Silicon Etching in NaOH/IPA Solution, Key Engineering Materials, Materials Science and Technology VIII (659), pp 681-685.
[30]D. L. Kendall, On etching very narrow grooves in silicon, Applied Physics Letters(26), 1975, pp. 195-198.
[31]E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Improved anisotropic etching process for industrial texturing of silicon solar cells , Solar Energy Materials & Solar Cells (57), 1999, pp.179-188.
[32]L. Shon-Roy, A. Wiesnoski, R. Zorich, Handbook of Semiconductor Manufacturing Technology, 2000,pp.329-331.
[33]E.D. Palik, H.F. Gray & P.B. Klein, A Raman Study of Etching Silicon in Aqueous KOH, Journal of The Electrochemical Society (130), 1983, pp.956-959.
[34]H. Seidel, L. Cespregi, A. Heuberger, H. Baumgartel, Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Behaviour of Passivation Layers, Journal of The Electrochemical Society (137), 1990, pp.3612-3626.
[35]P.M.M.C. Bressers, Silicon Etching An Electrochemical Study, PhD thesis, University of Utrecht, 1995.
[36]A.J. Nijdam, Anisotropic wet-chemical etching of silicon, PhD thesis, University of Twente, 2001.
[37]G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, Bulk Micromachining of Silicon, Proceedings of the IEEE (86), 1998, pp.1536-1551.
[38]M. Elwenspoek, The form of etch rate minima in wet chemical anisotropic etching of silicon, Journal of Micromechanical and Microengineering (6), 1996, pp.405-409.
[39]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solution-PartⅠ. Orientation dependence and behavior of passivation layer, Journal of The Electrochemical Society (137), 1990, pp. 3612-3626.
[40]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solution-PartⅡ. Influence of dopants, Journal of The Electrochemical Society (137), 1990, pp. 3626-3632.
[41]王宗新,金字塔抗反射結構之製作及其單晶矽太陽能電池之應用,碩士倫文,國立中山大學光電工程研究所,2007,pp. 8-10.
[42]蔡進譯,超高效率太陽電池從愛因斯坦的光電效應談起,物理雙月刊(廿七卷五期), 2005, pp. 701-719.
[43]P.Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces,Journal of Applied Physics (62-1), 1987, pp.243-249.
[44]黃慧婷,以常壓電漿噴射束製備鑭鍶錳氧化物固態燃料電池陰極材料之研究,碩士論文,國立台灣科技大學,2013,pp.49-50。
[45]P. Laboratatory, NIST: Atomic Spectra Database"National Institute of Standards and Techonology,Available, http://www.nist.gov/pml/data/asd.cfm.
[46]羅聖全,科學基礎研究之重要利器─掃描式電子顯微鏡(SEM),科學研習,月刊第 52 卷,2013。
[47]L. He, F. Lin, X. Li, H. Sui, Z. Xu, Interfacial sciences in unconventional petroleum production: from fundamentals to applications, Chemical Society Reviews,2015, pp.6.
[48]M. Amer, C. C. Wang, Review of defrosting methods, Renewable and Sustainable Energy Reviews (73), 2017, pp.53–74.
[49]W.A. Zisman, Relation of the equilibrium contact angle to liquid solid constitution, Advances in Chemistry American Chemical Society: Washington, (43), 1964, P1-P51.
[50]D.Y. Kwok, A.W. Neumann, Contact angle measurement contact angle interpretation, Advances in Colloid and Interface Science (81), 1999, P167-P249.
[51]S. Siboni, C. Della Volpe, D. Maniglio, M. Brugnara, The solid surface freeenergy calculation; II. The limits of the Zisman and of the equation-of-state approaches, Journal of Colloid and Interface Science (271), 2004, pp.454-P472.
[52]P. Zdenka, S.K. Karin, S.S. Majda, K. Tatjana, Determining the surface free energy of cellulose materials with the powder contact angle method, Textile Research Journal (74),2004 , pp.55-P62.
[53]欣創達科技有限公司,http://sindatek.con/Bmyl.htm.
[54]吳幸璇、蔡志申,光纖(Fiber),科技部高瞻自然科學教學資源平台,2011。
[55]V. Vancoppenolle, P. Y. Jouanb, A. Ricard, M. Wautelet, J. P. Dauchot, M. Hecq, Oxygen active species in an Ar–O2 magnetron discharge for titanium oxide deposition, Applied Surface Science (205), 2003, pp. 249–255.
[56]A. Qayyum, S. Zeb, S. Ali, A. Waheed, M. Zakaullah, Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma, Plasma Chemistry and Plasma Processing(25), 2005, pp. 551-564.
[57]K. J. Clay, S. P. Speakman, G. A. J. Amaratunga, S. R. P. Silva , Characterization of a-C:H:N deposition from CH4/N2 RF plasmas using optical emission spectroscopy, Journal of Applied Physics 79 (9), 1996, pp. 7227-7233.
[58]A. Qayyum, S. Zeb, M. A. Naveed, S. A. Ghauri, M. Zakaullah, Diagnostics of nitrogen plasma by trace rare-gas–optical emission spectroscopy, Journal of Applied Physics 98 (10), 2005, pp. 103303:1-9.
[59]E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y. Zhong, Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth, Elsevier Science Carbon (41), 2003, pp. 1827–1831.
[60]U. Cvelbar, N. Krstulović, S. Milošević, M. Mozetič, Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy, Elsevier Science Vacuum (82), 2008, pp. 224–227.
[61]E. Vassallo, A. Cremona, F. Ghezzi, D. Ricci, Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability, Elsevier Science Vacuum (84), 2010, pp. 902–906.
[62]Z. Kregar, N. Krstulovic, S. Milosevic, K. Kenda, U. Cvelbar, M. Mozetic, Inductively Coupled RF Oxygen Plasma Studied by Spatially Resolved Optical Emission Spectroscopy, IEEE transactions on plasma science 4(36), 2008, pp.1368-1369.
[63]Zlatko K., Marijan B., Slobodan M., Alenka V., Monitoring Oxygen Plasma Treatment of Polypropylene With Optical Emission Spectroscopy, IEEE transactions on plasma science 5(39), 2011, pp. 1239-1246.
[64]蕭宏,半導體製程技術導論 修訂第二版,全華圖書股份有限公司,2013,P.138。
[65]M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics 68, 1272 (1990). pp.1272-1281.

無法下載圖示 全文公開日期 2022/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE