簡易檢索 / 詳目顯示

研究生: 方昱棋
Yu-Chi Fang
論文名稱: 晶粒尺寸效應對白光發光二極體發光顏色之影響
The Size Effect of Excitation Chip on the Emission Color of White Light-emitting Diodes
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 林保宏
Pao-Hung Lin
李志堅
Chih-Chien Lee
楊恆隆
Heng-Long Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 發光二極體尺寸效應晶粒發光顏色
外文關鍵詞: Light-emitting diodes, Size effect, emission color
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以具有全方位反射器封裝之白光 LED 作為小尺寸 LED 晶粒取代大尺寸 LED 晶粒時,兩者發光色溫或色度座標不一致時,以色彩學原理為基準,提出一套白光 LED 色性質修正模式,利用 Matlab 程式做計算,以電源供應器提供電流使不同尺寸 LED 之紫外光、紫光、藍光晶粒達到發光顏色相近之結果。本實驗以固定電流密度做 Matlab 計算時,具有全方位反射器封裝之大、小尺寸 LED 對目標值(P0)之色差分別為 1.1 及 3.62 。為改善溫度上升所造成的波長位移,因此以相同電流密度為基礎做計算時之大、小尺寸 LED 對目標值(P0)之色差分別為 1.77 及 3.26 。由色差結果可知,因溫度上升所造成的波長位移對色差影響很小。。
    本研究採用多晶封裝結構,分別使用紫外光晶粒、紫光晶粒及藍光晶粒,螢光膠層是由紅色、綠色及黃色螢光粉與透明矽膠混合。本文使用之全方位反射器可提升紫外光與紫光晶粒之發光效率,利用光學方式提升 LED 晶粒的發光效率,對於晶粒本身結構並不會有任何影響,因此不會影響到 LED 的 I-V 曲線。而具有全方位反射器封裝之 LED ,其大、小尺寸 LED 紫外光與紫光晶粒之發光效率分別提升 23.5 % 、 22.9 % 、 19.7 % 、 14.3 % 。


    This paper use the white light LED packaged with omni-directional reflector (ODR) when a different size LED mix, both color temperature or chromaticity coordinates inconsistencies. We propose a set of white light LED color properties correction mode which is based on color science principles. Matlab program is used to calculate in the principle of chromatics. We provide current to drive the ultraviolet, violet, and blue LED chips of different sizes to achieve the similar emitting color. With fixed current density calculations in Matlab, the color difference of large and small-size LED, which have white light LED packaged with ODR, on the target coordinate (P0) were 1.1 and 3.62, respectively. To improve the wavelength shift caused by the temperature rises, my calculation is based on the same current density, the color difference of large and small-size LED on the target coordinate (P0) were 1.77 and 3.26, respectively. As the results, the wavelength shift has little effect on the color difference.
    In this study, we use multiple chips structure. The LED is comprised of three excitation chips of which are ultraviolet light chip, violet light chip and blue light chip; the phosphor blend is mixing transparent resin with red, green and yellow phosphors. The ODR structure in this study is to enhance the luminous efficiency of ultraviolet and violet chips. It enhances the luminous efficiency of LED chips optically, so the chips do not affect the I-V curve. The luminous efficiency of ultraviolet and violet of different size packaged with ODR enhance 23.5 %, 22.9 %, 11.3 % and 3.3 %, respectively.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 LED 尺寸效應 2 1.2.2 電極設計與電流壅塞效應 4 1.2.3 LED 熱效應 5 1.2.4 具有可調特性之白光發光二極體 6 1.2.5 光學鍍膜於二極體的應用 8 1.3 論文架構 9 第二章 研究目的與方法 10 2.1 研究目的 10 2.2 量測方法與儀器介紹 11 2.2.1 積分球與 I-V 電性量測 11 2.3 螢光粉材料成分與發射光譜 14 2.3.1 紅色螢光粉 14 2.3.2 黃色螢光粉 15 2.3.3 綠色螢光粉 16 2.3.4 藍色螢光粉 17 2.4 白光發光二極體封裝製作 18 2.4.1 封裝流程 18 2.4.2 矽膠層參數優化 20 2.5 接面溫度量測 21 2.5.1 順向偏壓法原理 21 2.5.2 實驗架構 25 2.5.3 實驗流程 26 2.6 全方位反射器 28 第三章 色度學之色彩變換原理與計算 29 3.1 色度學 29 3.1.1 CIE 色度座標 29 3.1.2 色差計算 31 3.1.3 色溫與相關色溫 33 3.2 色彩變換原理與方法 34 3.2.1 實驗方法 38 第四章 可調光譜之白光發光二極體 40 4.1 封裝原理 40 4.2 封裝結構與參數 41 4.3 以順向電壓法求得溫度對電流之效應 42 4.3.1 小尺寸 LED 晶粒順向電壓法溫度量測結果 43 4.3.2 大尺寸 LED 晶粒順向電壓法溫度量測結果 49 4.4 具有全方位反射器之封裝 55 4.5 電性質量測 57 第五章 晶粒尺寸效應色彩變換實驗結果 60 5.1 白光發光二極體之色彩變換 60 5.1.1 相同電流的結果 60 5.1.2 同樣電流密度效應 65 5.2 具有全方位反射器封裝之色彩變換 68 5.2.1 相同電流的結果 68 5.2.2 同樣電流密度效應 71 5.2.3 波長位移結果 74 5.3 不同尺寸晶粒色彩變換結果之誤差 79 5.3.1 波長影響 79 5.3.2 溫度效應 81 5.3.3 亮度因素 82 第六章 結論與建議 85 6.1 結論 85 6.2 未來發展方向 87 參考資料 88 附錄 1.1 Matlab 程式(以相同電流為例) 91 1.1.1 M 矩陣 91 1.1.2 重疊點座標 92 1.1.3 重疊點轉為線性 RGB 97 1.1.4 色差計算 98

    [1] X. Luo, W. Xiong, T. Cheng, and S. Liu, “Design and optimization of horizontally-located plate fin heat sink for high power LED street lamps, “ in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 854-859.
    [2] Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, et al., “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes, “ Journal of Applied Physics, vol. 107, p. 013103, 2010.
    [3] L. Yang, J. Hu, L. Kim, and M. W. Shin, “Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes,” IEEE, vol. 8, 2008.
    [4] C.-H. Hong, T. V. Cuong, H. G. Kim, J. H. Ryu, C. H. Hong, T. Taguchi, et al., “Characterization of chip size effect on thermal-optical properties of GaN-based light emitting diodes,” vol. 6355, pp. 635515-635515-8, 2006.
    [5] D. Han, J. Shim, D.-S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” physica status solidi (c), vol. 7, pp. 2133-2135, 2010.
    [6] S. Huang, H. Wu, B. Fan, B. Zhang, and G. Wang, “A chip-level electrothermal-coupled design model for high-power light-emitting diodes,” Journal of Applied Physics, vol. 107, p. 054509, 2010.
    [7] J. Petroski, “Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications,” pp. 215-222, 2002.
    [8] M. Meneghini, L.-R. Trevisanello, G. Meneghesso, and E. Zanoni, “A Review on the Reliability of GaN-Based LEDs,” IEEE, vol. 8, pp. 321-331, 2008.
    [9] M. Arik, J. Petroski, and S. Weaver, “Thermal challenges in the future generation solid state lighting applications: light emitting diodes,” in Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, 2002, pp. 113-120.
    [10] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” Journal of Crystal Growth, vol. 268, pp. 449-456, 2004.
    [11] S. I. Chan, W. S. Hong, K. T. Kim, Y. G. Yoon, J. H. Han, and J. S. Jang, “Accelerated life test of high power white light emitting diodes based on package failure mechanisms,” Microelectronics Reliability, vol. 51, pp. 1806-1809, 2011.
    [12] S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” Journal of Applied Physics, vol. 97, p. 054506, 2005.
    [13] A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Applied Physics Letters, vol. 80, p. 234, 2002.
    [14] N. Narendran, N. Maliyagoda, L. Deng, and R. M. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” in International Symposium on Optical Science and Technology, 2001, pp. 137-147.
    [15] Y. Ohno, “Spectral design considerations for white LED color rendering,” Optical Engineering, vol. 44, p. 111302, 2005.
    [16] I. T. Ferguson, I. Speier, M. Salsbury, N. Narendran, T. Taguchi, and I. E. Ashdown, “Color temperature tunable white light LED system,” vol. 6337, pp. 63371F-63371F-12, 2006.
    [17] N. Narendran and L. Deng, “Color rendering properties of LED light sources,” in International Symposium on Optical Science and Technology, pp. 61-67, 2002.
    [18] C. Lin, H. Kuo, C. Lai, H. Huang, K. Leung, C. Yu, et al., “Light extraction enhancement of InGaN-based green LEDs with a composite omnidirectional reflector,” Semiconductor science and technology, vol. 21, p. 1513, 2006.
    [19] C. Lin, C. Lai, T. Ko, H. Huang, H. Kuo, Y. Hung, et al., “Enhancement of InGaN-GaN indium-tin-oxide flip-chip light-emitting diodes with TiO2-SiO2 multilayer stack omnidirectional reflector,” IEEE photonics technology letters, vol. 18, pp. 2050-2052, 2006.
    [20] T.-W. Yeh, “光學鍍膜在藍綠光發光二極體上的應用, ” 碩士論文, 國立中央大學, 2001.
    [21] C. C. Lee, Thin Film Optics and Coating Technology: Taiwan: Yi Hsien Publishing Co., 2002.
    [22] 呂俊霖, “具有全方位反射器封裝之色溫可調式白光發光二極體,” 碩士論文, 國立臺灣科技大學, 2009.
    [23] 陳仙瑋, “高演色性白光發光二極體封裝,” 碩士論文, 國立臺灣科技大學, 2008.
    [24] 丁偉庭, “水冷式可調光 LED 植物燈,” 碩士論文, 國立臺灣科技大學, 2014.
    [25] Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Applied Physics Letters, vol. 85, p. 2163, 2004.
    [26] Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149-154, 1967.
    [27] 徐才竣, “以光學顯微鏡量測熱效應對發光二極體之影響,” 碩士論文, 國立臺灣科技大學, 2010.
    [28] 胡國瑞, 孫沛立, 徐道義, 陳鴻興, 黃日鋒, 詹文鑫, et al., “顯示色彩工程學,” 第 5 章, 2009.
    [29] E. F. Schubert, LIGHT-EMITTING DIODES. New York: Cambridge University, 2006.
    [30] 胡國瑞, 孫沛立, 徐道義, 陳鴻興, 黃日鋒, 詹文鑫, et al., “顯示色彩工程學,” 第 7 章, 2009.
    [31] H.-S. Lin. “不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響, ” 碩士論文, 國立中央大學, 2002.

    QR CODE