簡易檢索 / 詳目顯示

研究生: 江信遠
Hsin-Yuan Chiang
論文名稱: 靜電和壓電揚聲器之圓形振膜振動與聲壓研究
Vibration and Sound Pressure Produced by Circular Diaphragms of Electrostatic and Piezoelectric Speakers
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 馬劍清
Chien-Ching Ma
王昭男
Chao-Nan Wang
白明憲
Ming-Sian Bai
劉興華
Shin-Hwa Liu
趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 振動聲壓振膜靜電壓電
外文關鍵詞: Vibration, Sound pressure, Diaphragm, Electrostatic, Piezoelectric
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為研究ITO (indium tin oxide)靜電揚聲器(直徑60 mm)和雙層壓電圓板複合薄膜揚聲器(直徑73 mm)的共振模態和聲壓,我們以理論計算靜電圓形薄膜的聲壓,以及壓電圓形薄板的特徵頻率,並規劃四項測量方法,包括集中參數測量法(lumped parameter measurement,LPM)、分佈參數測量法(distributed parameter measurement,DPM)、全像式電子斑點干涉術(amplitude-fluctuation electronic speckle pattern interferometry,ESPI)和聲學測量(acoustic measurement,AM),測量範圍為20–20k Hz。先使用LPM和DPM方法測量振膜的位移振幅和模態,並預估聲壓,再以AM方法測量聲壓曲線來驗證之。實驗結果顯示在沒有聲學網的聲學阻尼影響下,聲壓曲線呈現許多鋸齒狀的共振頻率,LPM、DPM和AM方法分別測得的對稱模態頻率非常接近;在對稱模態圖形上,ESPI測量全像的條紋數與DPM的節圓數相符合。另外,靜電揚聲器的聲壓曲線整體較壓電揚聲器平滑,其模態(0,1)的品質因子(Q)為9.8;當使用145 [ray1]特定聲阻的聲學網,易受到聲學阻尼影響,Q值降至1.8。相反地,壓電揚聲器的模態(0,1)–(0,4)無論是否有聲學網,皆不受聲學阻尼影響,Q值皆維持10至11之間。故「靜電薄膜」和「壓電薄板」揚聲器有截然不同的振動機制和聲壓特性,在實際產品的應用上,前者相當適合用於音樂用耳機,後者則可用在音頻訊號裝置。無論ITO孔極板或圓板複合薄膜的新想法,藉由不同的光學測量特性,可有效鑑別出揚聲器的振動和聲輻射行為。


    To investigate the resonance modes and sound pressure of an ITO (indium tin oxide) push-pull electrostatic speaker (60-mm diameter) and free-edge-like piezoelectric speakers (73-mm diameter), we calculated the sound pressure of an electrostatic circular membrane and the eigenfrequencies of piezoelectric circular plates, as well as employed four evaluation methods. In this study, lumped parameter measurement (LPM), distributed parameter measurement (DPM), amplitude-fluctuation electronic speckle pattern interferometry (ESPI) and acoustic measurement (AM) were employed from 20 Hz to 20 kHz. Measurements of displacement amplitude and vibrating mode were used to predict sound pressure levels (SPLs) based on LPM and DPM results. Comparisons with measured SPL values of AM were used to verify our predictions. The experimental results demonstrate the electrostatic and piezoelectric speakers, without additional acoustic mesh damping, both produced numerous resonant frequencies. The LPM, DPM and AM produced the SPL values of each mode that were in good agreement. Under linear operations, the DPM and ESPI techniques proved effective in determining the visualization of axisymmetric mode shapes. The piezoelectric speakers produced jagged SPL curves with peaks steeper than those of the electrostatic speaker. At mode (0,1), the electrostatic speaker was affected by acoustic resistance, which resulted in the following quality factor (Q) values: Q = 9.8 without mesh and Q = 1.8 using a mesh with specific acoustic resistance of 145 [rayl]. By contrast, the piezoelectric speakers at modes (0,1)–(0,4) were unaffected by acoustic resistance, which resulted in Q values of 10–11, regardless of whether mesh was applied. These characteristics make electrostatic speakers suitable for headphones and piezoelectric speakers suitable for audio signaling devices.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 符號索引 XI 第一章 緒論 1 1.1 研究目的 1 1.2文獻回顧 2 1.3研究方法 5 第二章 元件設計與製作 7 2.1 ITO靜電揚聲器設計 7 2.2 雙層壓電圓板複合薄膜揚聲器設計 11 2.3 聲學網元件設計 14 第三章 靜電薄膜振動和聲壓分析 16 3.1 圓形薄膜波動方程式 16 3.2 無阻尼之自由振動 17 3.3 對稱模態振動 20 3.4 具阻尼之強制振動 21 3.5 圓形薄膜聲壓分析 23 3.6 具阻尼之強制振動–特徵函數展開式 25 3.7 圓形薄膜聲壓分析–特徵函數展開式 29 第四章 壓電薄板振動和聲壓分析 35 4.1 圓形薄板波動方程式 35 4.2 無阻尼之自由振動 36 4.3 邊界條件選擇與影響 40 4.3.1 固定邊界(C) 40 4.3.2 簡支邊界(SS) 44 4.3.3 自由邊界(F) 46 4.4 薄板聲壓分析與評鑑 50 第五章 振動和聲壓測量方法 54 5.1 集中參數測量法(LPM) 55 5.2 分佈參數測量法(DPM) 57 5.3 全像式電子斑點干涉術(ESPI) 58 5.4 聲學測量(AM) 60 第六章 實驗結果與討論 63 6.1 ITO靜電揚聲器(ES-60)測量結果和分析 63 6.1.1 LPM 63 6.1.2 DPM 66 6.1.3 ESPI 69 6.1.4 AM 71 6.1.5聲學測量(AM)與理論模型解析之比較 74 6.2 雙層壓電圓板複合薄膜揚聲器(PE-73系列)測量結果和分析 80 6.2.1 LPM 80 6.2.2 DPM 83 6.2.3 ESPI 89 6.2.4 AM 93 6.3 ES-60和PE-73A測量結果比較 99 6.4 測量方法的差異說明 101 第七章 結論 102 參考文獻 104

    [1] 白明憲,工程聲學,第五版,新北市,台灣:全華圖書,2012,第五章。
    [2] J. Borwick, Loudspeaker and headphone handbook, 3rd ed., Oxford, UK: Focal Press, 2001, pp. 108–195, 529–564.
    [3] P. Lotton, M. Bruneau, Z. Škvor and A. M. Brunea, “A model to describe the behaviour of a laterally radiating piezoelectric loudspeaker,” Appl. Acoust., vol. 58, no. 4, pp. 419–442, Dec. 1999.
    [4] P. M. Morse, Vibration and Sound, 2nd ed., New York, USA: McGraw-Hill, 1948, pp. 172–216.
    [5] M. Jabareen and M. Eisenberger, “Free vibrations of non-homogeneous circular and annular membranes,” J. Sound and Vibration, vol. 240, no. 3, pp. 409–429, Feb. 2001.
    [6] A. W. Leissa, Vibration of Plates (NASA SP-160), Washington DC, USA: U.S. Government Printing Office, 1969, pp. 1–35.
    [7] A. W. Leissa, “Natural frequencies of simply supported circular plates,” J. Sound and Vibration, vol. 70, no. 2, pp. 221–229, May. 1980.
    [8] M. Amabili, A. Pasqualini, and G. Dalpiaz, “Natural frequencies and modes of free-edge circular plates vibrating in vacuum or in contact with liquid,” J. Sound and Vibration, vol. 188, no. 5, pp. 685–699, Dec. 1995.
    [9] W. T. Selsted, “The electrostatic earphone,” J. Audio Eng. Soc., vol. 9, no. 2, pp. 145–147, Apr. 1961.
    [10] J. P. Wilson, “High-quality electrostatic headphones,” Wireless World, pp. 440–443, Dec. 1968.
    [11] P. D. Harvey, “Electrostatic headphone design,” Wireless World, pp. 527–531, Nov. 1971.
    [12] R. R. Sanders, The Electrostatic Loudspker Design Cookbook, 1st ed., NH, USA: Audio Amateur Press, 1995.
    [13] J. H. Streng, “Calculation of the surface pressure on a vibrating circular stretched membrane in free space,” J. Acoust. Soc. Am., vol. 82, no. 2, pp. 679–686, Aug. 1987.
    [14] J. H. Streng, “Sound Radiation from Circular Stretched Membranes in Free Space,” J. Audio Eng. Soc., vol. 37, no. 3, pp. 107–118, Mar. 1989.
    [15] T. Mellow and L. Kärkkäinen, “On the sound field of a circular membrane in free space and an infinite baffle,” J. Acoust. Soc. Am., vol. 120, no. 5, pp. 2460–2477, Nov. 2006.
    [16] M. R. Bai, C. J. Wang, D. M. Chiang, and S. R. Lin, “Experimental modeling and design optimization of push-pull electret loudspeakers,” J. Acoust. Soc. Am., vol. 127, no. 4, pp. 2274–2281, Apr. 2010.
    [17] Y. C. Chen, W. C. Ko, H. L. Chen, W. J. Wu, P. Z. Chang and C. K. Lee, “A thin light flexible electromechanically actuated electret-based loudspeaker for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4140–4147, Nov. 2012.
    [18] Q. Zhou and A. Zettl, “Electrostatic graphene loudspeaker,” Appl. Phys. Lett., vol. 102, no. 22 (223109), 2013.
    [19] H. Y. Chiang and Y. H. Huang, “Vibration and sound radiation of an electrostatic speaker based on circular diaphragm,” J. Acoust. Soc. Am., vol. 137, no. 4, pp. 1714–1721, Apr. 2015.
    [20] Y. H. Huang and H. Y. Chiang, “Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms,” J. Sound and Vibration, vol. 371, pp. 210–226, Jun. 2016.
    [21] Y. H. Huang and C. C. Ma, “Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no.12, pp. 2598–2611, Dec. 2009.
    [22] H. J. Kim, W. S. Yang, and K. No, “Effect of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 8, pp. 1587–1594, Aug. 2013.
    [23] S. H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Özyilmaz and J. H. Ahn, “Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications,” ACS Nano, vol. 7, no. 4, pp. 3130‒3138, Apr. 2013.
    [24] Y. H. Huang, C. C. Ma and Z. Z. Li, “Investigations on vibration characteristics of two-layered piezoceramic disks,” Int. J. Solids and Struct., vol. 51, pp. 227–251, Jan. 2014.
    [25] L. E. Kinsler, A. R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of acoustics, 4th ed., New York, USA: Wiley, 2000, pp. 91–112.
    [26] A. D. Pierce, Acoustics: an Introduction to its physical principles and Applications, New York, USA: McGraw-Hill, 1981, pp. 208–249.
    [27] F. Fahy and P. Gardonio, Sound and structural vibration: radiation, transmission and response, 2nd ed., Oxford, UK: Academic Press, 2007, pp. 135–241.
    [28] L. Debnath and D. Bhatta, Integral transforms and their Applications, 3rd ed., FL, USA: CRC Press, 2015, pp. 343–366.
    [29] L. L. Beranek and T. J. Mellow, Acoustics: sound field and transducers, 1st ed., MA, USA: Elsevier, 2012, pp. 119–198.
    [30] R. M. Aarts and A. J. E. M. Janssen, “Approximation of Struve function H1 occurring in impedance calculations,” J. Acoust. Soc. Am., vol. 113, no. 5, pp. 2635–2637, May 2003.
    [31] W. M. Leach, Introduction to Electroacoustics and Audio Amplifier Design, 4th ed., IA, USA: Kendall Hunt, 2010, pp.1–155.
    [32] Piezoelectric ceramics: principles and applications, 2nd ed., APC International, Ltd., PA, USA, 2011.
    [33] W. Klippel and J. Schlechter, “Measurement and visualization of Loudseaker Cone Vibration,” presented at the 121st convention of the Audio Eng. Soc., San Francisco, CA, USA, Oct. 5–8, 2006, PN: 6882.
    [34] W. Klippel and J. Schlechter, “Distributed mechanical parameters of loudspeakers part 1: measurements,” J. Audio Eng. Soc., vol. 57, no. 7/8, pp. 500–511, Jul./Aug. 2009.
    [35] W. Klippel and J. Schlechter, “Distributed mechanical parameters of loudspeakers part 2: Diagnostics,” J. Audio Eng. Soc., vol. 57, no. 9, pp. 696–708, Sep. 2009.

    無法下載圖示 全文公開日期 2022/08/10 (校內網路)
    全文公開日期 2027/08/10 (校外網路)
    全文公開日期 2027/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE