簡易檢索 / 詳目顯示

研究生: 葉敬賢
Ching-Hsien Yeh
論文名稱: 複合式光學元件於振動式射出壓縮成形之殘留應力及光學品質研究
Research on Residual Stress and Optical Quality in Hybrid Optical Elements by Vibratile Injection Compression Molding Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
沈永康
Yung-Kang Shen
陳建光
Jem-Kun Chen
翁永進
Yung-Jin Weng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 280
中文關鍵詞: 振動式射出壓縮成形殘留應力分子配向性複合式光學元件光學品質
外文關鍵詞: Vibratile injection compression molding, residual stress, molecular orientation, hybrid optical lens, optical quality
相關次數: 點閱:214下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討複合式光學元件於射出成形中,其殘留應力的生成模式與變化,以及射出成形過程中之分子配向性分佈,最後應用振動式射出壓縮成形探討非球面形狀誤差、微結構轉寫率以及殘留應力對光學品質之影響。在研究方法上設計一模內熱退火實驗探討充填過程中澆口至充填末端之殘留應力之生成模式與變化,應用拉曼光譜儀探討成品於不同製程參數以及厚度下之峰值強度變化,並藉此定義一拉曼峰值強度比探討分子配向性分佈情形,最後藉由實驗設計探討射速、模溫與振動頻率對非球面形狀誤差、微結構轉寫率以及殘留應力之影響。實驗方法上將應用模流分析軟體根據實驗結果分析比對探討與實驗結果之趨勢。實驗結果上,根據模內熱退火實驗觀察到殘留應力隨持溫時間增加而逐漸減少,根據拉曼峰值強度比定義得知高射速下其成品表層有較高的配向性,並經模內熱退火實驗後其配向性明顯降低,由實驗設計結果得知非球面形狀誤差、微結構轉寫率以及殘留應力皆受模溫影響程度較大,最後並藉由誤差計算針對各成形誤差結果推測非球面形狀誤差對光學品質之影響最大。


    This research is to explore the formation model of the residual stress, molecular orientation during injection molding of hybrid optical lens and finally to study aspheric form error, groove filling rate(GFR) and residual stress on optical quality. The research methods discuss the forming of residual stress from gate to filling end by in-mold annealing. Further, the Raman intensity ratio is defined to discuss the molecular orientation on different injection velocity and thickness. It also discusses the factors of injection velocity, mold temperature and PZT vibration frequency to the effects of aspheric form error, GFR and residual stress by experiment design finally. Experimental results will be compared with those of simulation analysis. From experimental results, the residual stress reduces gradually once the time of holding temperature is getting longer by in-mold annealing. The molded parts near the mold wall can have higher molecular orientation with higher injection velocity.The molecular orientation reduces in this in-mold annealing experiment. The aspheric form error, GFR and residual stress are mainly affected by mold temperature. Finally, the optical quality is mostly affected by aspheric form error.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 XI 表目錄 XXI 符號表 XXIII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 7 1.3 研究方法 8 1.4 論文架構 10 第二章 文獻回顧 12 2.1 射出成形之殘留應力 12 2.2 射出成形之分子配向性 17 2.3 光學元件於射出壓縮成形應用 21 2.4 光學元件成形品質檢測探討 26 2.5 光學元件之成形技術相關專利回顧 30 2.6 文獻回顧總結 35 第三章 射出成形製程與實驗原理 47 3.1 射出成形過程之殘留應力 47 3.1.1 流動導致殘留應力 48 3.1.2 熱影響導致的殘留應力 50 3.2 光彈量測(Photoelastic) 54 3.2.1 光波動理論 54 3.2.2 雙折射現象 56 3.2.3 應力光學定律(Stress-Optic Law) 59 3.3 拉曼光譜儀原理 63 3.4 射出成形製程模式 67 3.4.1 射出壓縮成形(Injection Compression Molding, ICM) 71 3.4.2 模內微壓縮射出成形(In-Mold Micro Compression, IMMC) 73 3.4.3 振動式射出壓縮成形(Vibratile Injection Compression Molding, V-ICM) 76 3.4.4 各射出壓縮製程總結 79 第四章 光學與模具設計分析 81 4.1 光學設計 81 4.2 光學分析 82 4.3 模具設計 85 4.4 模流分析 87 第五章 實驗設備與方法 96 5.1 實驗設備 96 5.1.1..射出成形設備 96 5.1.2 模內振動微射壓設備 97 5.1.3 模溫控制設備 97 5.1.4 控制系統 98 5.1.5 加工設備 98 5.2 量測設備 103 5.3 模內熱退火實驗規劃 108 5.4 分子配向性檢測實驗規劃 112 5.5 光學元件檢測實驗規劃 121 5.6 變異數分析 123 5.7 量測方式 128 5.7.1.Fresnel 結構轉寫率量測 128 5.7.2 非球面形狀誤差量測 130 5.7.3 殘留應力量測 132 5.7.4 成像檢測 136 5.8 多尺度複合式光學元件誤差分析 140 5.8.1 非球面成形誤差定義 141 5.8.2 微結構成形誤差定義 144 5.8.3 殘留應力誤差定義 145 5.8.4 光學誤差定義 145 第六章 實驗結果與討論 147 6.1 模內熱退火實驗 147 6.1.1 退火實驗結果 147 6.1.2 應力生成模式比較 158 6.2 分子配向性結果探討 162 6.2.1 不同射速分子配向性比較 162 6.2.2 退火後之分子配向性比較 171 6.3 光學元件檢測實驗 180 6.3.1 不同製程模穴壓力探討 180 6.3.2 不同製程殘留應力探討 186 6.3.3 微結構轉寫率量測 193 6.3.4 非球面形狀誤差量測 200 6.4 光學品質檢測 206 6.4.1 複合式光學元件成像結果 206 6.4.2 光學品質探討 211 第七章 結論與建議 213 7.1 結論 213 7.2 建議 216 參考文獻 217 附錄A 複合式光學元件設計 223 附錄B 光學分析結果 224 附錄C 實驗模具設計圖 228 附錄D FANUC ROBOSHOT α15-iA 機台規格 230 附錄E Delpet 80NH材料性質表 231 附錄F Piezomechanik壓電致動器Pst 150/20/36 VS25 232 附錄G 石英壓力感測器KISTLER 9204B 233 附錄H Ultrahigh Accurate 3-D Profilometer Specifications 234 附錄I 非球面模仁設計曲線 235 附錄J 非球面模仁形狀誤差 236 附錄K 複合式光學元件近拍效果 238 附錄L 退火實驗量測結果 239 附錄M 非球面量測資料 240 附錄N 各實驗成像結果 248 作者簡介 250

    [1] 國家實驗研究院儀器科技中心,“光學元件精密製造與檢測”,國家實驗研究院儀器科技中心,2007年,初版。
    [2] 張榮語,“射出成型模具設計模具設計”,高立圖書有限公司,1995年,初版。
    [3] 王志豪,“振動式射壓於複合式光學元件射出壓縮成形之研究”,國立台灣科技大學,機械工程系論文,2010年。
    [4] L. C. E. Struik, “Orientation Effects and Cooling Stresses in Amorphous Polymers”, POLYMER ENGINEERING AND SCIENCE, Vol. 18, 799-811, 1978
    [5] A. I. Isayev, “Orientation Development in the Injection Molding of Amorphous Polymers”, POLYMER ENGINEERING AND SCIENCE, Vol. 23, No. 5, 271-284, 1983
    [6] 林賢梁,“壓克力鏡片之射出成型模擬極其殘留應力之探討”,台灣工業技術學院,機械工程技術研究所碩士論文,1994
    [7] 鄭穎聰,“鏡片射出成形分析與模具設計”,國立高雄應用科技大學,模具工程系碩士班論文,1994
    [8] 韋仁旌,“以熱處理方式消除射出成型製品殘留應力之研究”,國立交通大學,機械工程所碩士論文,1998
    [9] 黃東鴻,“薄殼射出件翹曲變形與殘留應力研究”,國立成功大學,航空太空工程研究所碩士論文,2002
    [10] A. I. Isayev, G. D. Shyu, C. T. Li, “Residual Stresses and Birefringence in Injection Molding of Amorphous Polymers: Simulation and Comparison with Experiment”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 44, 622–639 , 2006
    [11] 陳文修,“光學薄件射出成形之殘留應力研究”,國立台北科技大學,機電整合研究所論文,2008年。
    [12] Can Weng , W.B. Lee, S. To, Bing-yan Jiang, “Numerical simulation of residual stress and birefringence in the precision injection molding of plastic microlens arrays”, International Communications in Heat and Mass Transfer, 36, 213–219, 2009
    [13] Mikio Takeshima and Nobuhiro Funakoshi,“Molecular Orientation Distribution in Injection-Molded Polycarbonate Discs”, Applied Polymer Science, Vol. 32, 3457-3468, 1986
    [14] M. R. FFernández, J. C. Merino, and J. M. Pastor, “Injection Molding of Poly(Ethy1ene Terephthalate):Differential Scanning Calorimetry and Confocal Micro-Raman Spectroscopy Investigations of the Skin-Core Morphology”, Polymer Engineering and Science, Vol. 40, 95-107, 2000
    [15] D.García-Loópez,J. C. Merino, I. Gobernado-Mitre, J. M. Pastor, “Polarized Confocal Raman Microspectroscopy Studies of Chain Orientation on Injected Poly(propylene)/Montmorillonite Nanocomposites”, Journal of Applied Polymer Science, Vol. 96, 2377–2382, 2005
    [16] Osamu Murakami, Kazushi Yamada, Masaya Kotaki, Hiroyuki Hamada, “Evaluation of molecular orientation in injection molded parts with microscale features by Raman spectroscopy”, Journal of Applied Polymer Science, Vol. 112, 1607–1614, 2009
    [17] J. Martin, S. Margueron, M. Fontana, M. Cochez, P. Bourson, “Study of the Molecular Orientation Heterogeneity in Polypropylene Injection-Molded Parts by Raman Spectroscopy”, POLYMER ENGINEERING AND SCIENCE, 138-143, 2010
    [18] 王晴遠,“高分子熔膠於彈臂搭接處之射出成形與分子配向性分析”,國立台灣科技大學,機械工程系論文,2010年。
    [19] S. Y. Yang, M. Z. Ke, “Experimental Study on the Effects of Adding Compression to Injection Molding Process”, Polymer Technology, Vol. 14, No. 1, 15-24 , 1995
    [20] 黃竹伸,“超薄型導光板光學設計與製程最佳化之研究”,國立高雄應用科技大學,模具工程系碩士論文,1998
    [21] 廖俊郎,“射出壓縮成型對微型製品光學品質之影響研究”,雲林科技大學,機械工程技術研究所碩士論文,1999
    [22] Shinill Kang, Jong Sung Kim, Hyun Kim, “Birefringence distribution in magneto-optical disk substrate fabricated by injection compression molding”, Society of Photo-Optical Instrumentation Engineers, ,39(3), 689–694, 2000
    [23] 簡惠民,"不等行程射出壓縮應用於精密楔形板件及表面微結構成型性探討",臺灣大學,機械工程系碩士論文,2002。
    [24] Wen-Bin Young, “Effect of process parameters on injection compression molding of pickup lens”, Applied Mathematical Modelling , Vol. 29, 955–971 (2005)
    [25] Cheng-Hsien Wu, Wei-Shiu Chen, “Injection molding and injection compression molding of three-beam grating of DVD pickup lens”, Sensors and Actuators, A 125, 367–375 (2006)
    [26] 林先明,"複合式光學元件微射壓成形之研究",台灣科技大學,機械工程系碩士論文,2008。
    [27] 李豐吉,“多尺度複合式光學元件射出成形研究”,國立台灣科技大學,機械工程研究所碩士論文,2009。
    [28] Sung Hee Lee, Seong Yun Kim, Jae Ryoun Youn, Baek Jin Kim, Warpage of a Large-Sized Orthogonal Stiffened Plate Produced by Injection Molding and Injection Compression Molding, Journal of Applied Polymer Science, Vol. 116, 3460–3467, 2010
    [29] K. Keränen, J.-T. Mäkinen, E. J. Pääkkönen, M. Koponen, M. Karttunen, J. Hiltunen, P. Karioja, “Implementing a prototyping network for injection moulded imaging lenses in Finland”, SPIE Vol. 5965, 59651E 1-9, 2005
    [30] Matthew D. Chidley, Tomasz Tkaczyk, Robert Kestera, Michael R. Descoura, “Flow-induced birefringence: the hidden PSF killer in highperformance injection-molded plastic optics”, Proc. of SPIE, Vol. 6082, 60820E1-11, 2006
    [31] W. Michaeli., S. Hebner.,F. klaiber. J. Forster., “Geometrical Accuracy and Optical Performance of Injection Moulded and Injection-compression Moulded Plastic Parts”, Annals of the CIRP, Vol.56 (2007)
    [32] Huai En Lai, Pei Jen Wang, “Study of process parameters on optical qualities forinjection-molded plastic lenses”, APPLIED OPTICS, Vol. 47, 2017-2027, 2008
    [33] Kuo-Ming Tsai, Chung-Yu Hsieh, Wei-Chun Lo, “A Study of the Effects of process parameter for injection molding on surface quality of optical lenses”, journal of materials processing technology, vol209, 3469–3477, 2009
    [34] Jen-Yu Shieh, Luke K. Wang, Shih-Ying Ke, “A Feasible Injection Molding Technique for the Manufacturing of Large Diameter Aspheric Plastic Lenses”, OPTICAL REVIEW Vol. 17, No. 4, 399–403, 2010
    [35] Po-Ling Shiao, Chien-Tsung Wu, Chi-Shen Tuan, Tzong-Ming Yeh, “Process for Molding Plastic Lences”, Patent No.:US5415817, 1995
    [36] Steven M. Maus, George J. Galic, “Method and Apparatus for Injection-Compression Molding and Ejecting Paired Thermoplastic Spectacle Lens Suited for Fully Automated Dip Hardcoating”, Patent No.:US5718849, 1998
    [37] Kiyohiro Saito, Tatsuo Nishimoto, Hiroshi Asami, “Injection Compression Molding Method of a Spectacle Lens and a Spectacle Lens Produced by Using the Same”, Patent No.: US5972252, 1999
    [38] Po-Sung Kao, Shih-Chung Chen, Sheng-Jui Chao, “Pressure-Controlling Device for an Injection Mold”, Publication No.:US2004/0142057, 2004
    [39] Joachim Johannes Niewels, “Method and Apparatus for Injection Compression Molding Using Active Material Elements”, PublicationNo.:US2005/0236740A1, 2005
    [40] Jung-Tang Huang, Tao-Yuan Hsien, “High Frequency Induction Heater Built an Injection Mold”, Patent No.:US7132632B2, 2006
    [41] 陳信旭、謝錦坤、朱志宏、陳彥竹,”模具Mold”, TW201006645, 2008
    [42] Shia-Chung Chen, Jen-An Chang, “Gas-Assisted Mold Surface Heating System”, Publication No.:US2010/0255143A1, 2010
    [43] 韓志翔,“光學薄件的成形方法”, TW201107805A1,2011
    [44] Gerd Pötsch, Walter Michaeli, “Injection Molding An Introduction”, Hanser /Gardner Publications, Inc., Cincinnati, ISBN 3-446-17196-7, 1995
    [45] Avraam I. and Isayev, “Injection and Compression Molding Fundamentals”, Marcel Dekker, Inc., 1987
    [46] 葉玉堂,饒建珍,肖峻,“幾何光學”,五南圖書出版公司,2008年,12月初版
    [47] James W. Dally, “William F. Riley, :Experimental Stress Analysis”, McGraw-Hill, Inc., Third Edition, 1991
    [48] Moldex 3D R10 material data base, 2011
    [49] 賀孝雍,“儀器分析”,曉園出版社,1980年,二版
    [50] 任欣豪,“以拉曼光譜、低頻拉曼光譜及共振拉曼光譜研究溶凝膠反應”,逢甲大學,光電物理研究所碩士論文,1993
    [51] C.-C. A. Chen, Handout of Manufacturing Analysis, Department of Mechanical Engineering, National Taiwan University of Science and Technology,2008.
    [52] 高旭麒,“繞射光學元件微射壓成形之研究”,國立台灣科技大學,機械工程系碩士論文,1996
    [53] ASTM D4093, “Standard Test Method for Photoelastic Measurements of Birefringence and Residual Strains in Transparent or Translucent Plastic Materials”, 599-608
    [54] 陳智榮,“白光光彈術於塑膠成形平板殘留應力分析”,2009機電整合科技應用研討會論文集暨全國大專生機電整合專題論文研討會,2009
    [55] Standardization Committee,“Resolution Measurement Methods for Digital Cameras”,Camera & Imaging Products Association,2003
    [56] 林志青,“大角度鏡片之量測與誤差分析”,國立台灣科技大學,機械工程系碩士論文,1997

    QR CODE