簡易檢索 / 詳目顯示

研究生: Maria Bangun Rizkiana
Maria Bangun Rizkiana
論文名稱: 木粉之粒徑尺寸與添加劑對塑木料複合材料的影 響
Effect of Wood Particle Size and Additives to The Durability of Wood Plastic Composites
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 葉樹開
Shu-Kai Yeh
賴森茂
Sen-Mao Lai
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 90
中文關鍵詞: 塑木複合材料耐用性真菌腐爛試驗粒徑尺寸偶合劑
外文關鍵詞: wood plastic composites, durability, fungal decay testsp, article sizes, coupling agent
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

塑木複合材料(wood plastic composites, WPC)被認為是至今取代非生物可降解高分子的材料之一。 WPC 有著許多優點,如高生物降解性、高強度和彎曲性能,以及低成本等。現今環保意識抬頭,政府的政策逐漸傾向以可再生性材料取代不可再生性材料,因此 WPC 吸引了工業界的大量投入。這之中 WPC 最大的問題是它的耐用性,近年來為了將 WPC 應用於日常生活中,學者們開始投入研究以改善其耐用性。本研究探討木粉之粒徑尺寸及添加劑對 WPC 的影響。本實驗將木粉過篩後(目數為 20, 80, 120)與聚丙烯(polypropylene, PP)混合製備成 WPC,這之中加入 2wt%PP-g-MA 及 1wt%硼酸鋅來改善 WPC 的性質。發現 WPC 樣品的機械性能與粒徑差異無關,然而有添加 PP-g-MA 的樣品其拉伸強度增加了 64%。我們也對 WPC 進行了循環吸水試驗和真菌試驗。實驗結果發現 WPC 的粒徑和添加劑,對循環吸水有著較大的影響,與具較大粒徑且不摻入 PP-g-MA的樣品相比,粒徑小並添加 2 wt%PP-g-MA 的 WPC 樣品有損壞較少。同時,在真菌試驗中,有無添加硼酸鋅的影響非常大,但結果顯示木粉粒徑與真菌攻擊沒有直接關係。當樣品有添加硼酸鋅時,
樣品比較不會被真菌侵蝕。此外,在所有相關測試完成之後,使用 SEM 進行表面裂縫的觀察和粗糙度的分析。


Wood plastic composites (WPC) is considered as one of the advanced materials to
replace the use of non-degradable polymeric materials. Number of advantages are offered,including high biodegradability, great strength and flexural properties, and less costly materials. Therefore, WPC has attracted many manufacturing industries and its renewability has become one of the reasons for government to change non-renewable
composite materials into the renewable one. However, the durability has always been questionable in the area of composites manufacturing. Therefore, current study tried to investigate the durability of WPC to be feasible materials for real-life applications. Presented research investigated the effect of different wood flour particle size and additives on the durability of wood plastic composite (WPC). WPC was prepared by blending wood flour (20, 80, 120 mesh) with polypropylene (PP), 2 wt% PP-g-MA and 1wt% zinc borate were added in the formulation to improve the properties of WPC. Mechanical properties of WPC samples were found to be independent on particle size difference. However, the presence of PP-g-MA increased the tensile strength up to 64%. WPC samples were also subjected to cyclic moisture absorption tests and fungal decay tests. Here, the effect of particle sizes and additives were more pronounced and accumulation of damage was discovered after the exposure of cyclic test to WPC samples. WPC with smaller particle size and 2 wt% PP-g-MA possessed less damage compared to the ones with larger particle size and no incorporation of PP-g-MA. Meanwhile, in the fungal decay test zinc borate influenced more than any variables involved. Mass loss caused by fungi was lesser when zinc borate was present and the result of the fungal decay test was independent of particle size difference. In addition, SEM followed by roughness analysis were conducted to analyze the surface cracks after all involved tests.

摘要...................................................................................................................................... I ABSTRACT........................................................................................................................ II ACKNOWLEDGEMENT .................................................................................................III CONTENTS.......................................................................................................................IV LIST OF FIGURES ...........................................................................................................VI LIST OF TABLES.............................................................................................................IX CHAPTER 1 INTRODUCTION .........................................................................................1 CHAPTER 2 LITERATURE REVIEW ..............................................................................4 2.1. Natural Fiber Composites (NFCs).........................................................................4 2.2. Wood Plastic Composites – Overview..................................................................7 2.2.1. Factors affecting mechanical properties of WPCs.........................................8 2.3. Mechanical Properties of WPC...........................................................................16 2.4. Durability of WPC ..............................................................................................18 2.4.1. Natural Exposure .........................................................................................19 2.4.2. Moisture Absorption and Cyclic Accelerated Weathering ..........................19 2.4.3. Fungal Attack Resistance.............................................................................22 CHAPTER 3 EXPERIMENTAL METHOD.....................................................................25 3.1 Materials..............................................................................................................25 3.2. Instruments..........................................................................................................27 3.3. Methods...............................................................................................................28 3.3.1 Schematic Experimental Flowchart .............................................................28 3.3.2 Wood plastic composites (WPC) processing and test specimens making...29 3.3.3 Mechanical Properties Test ...............................................................................30 3.3.4 Cyclic Moisture Absorption Test.................................................................31 3.3.5 Fungal decay test..........................................................................................32 3.3.6 Scanning electron microscopy (SEM) .........................................................33 CHAPTER 4 RESULTS AND DISCUSSION..................................................................34 4.1. Mechanical Properties Test .................................................................................34 4.2. Fully saturated data .............................................................................................38 4.3. Cyclic Moisture Absorption Test ........................................................................40 4.4. Fungal Decay Test...............................................................................................49 CHAPTER 5 CONCLUSIONS .........................................................................................55 REFERENCES ..................................................................................................................56 APPENDIX A MECHANICAL PROPERTIES................................................................68 APPENDIX B CYLIC TESTS SEM IMAGES.................................................................70 APPENDIX C DIFFUSION COEFFICIENTS IN CYCLIC TESTS................................73 APPENDIX D MASS LOSS IN FUNGAL DECAY TEST .............................................74 APPENDIX E MOISTURE CONTENT IN FUNGAL DECAY TEST ...........................76 APPENDIX F STATISTICAL ANALYSIS FOR FUNGAL DECAY TEST ..................78

Takahashi S, Paul DR. Gas permeation in poly(ether imide) nanocomposite
membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix.
Polymer 2006;47(21):7519-34.
2. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R,
Law KL. Plastic waste inputs from land into the ocean. Science
2015;347(6223):768-771.
3. https://ourworldindata.org/plastic-pollution, accessed date: June, 1 2019.
4. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive manufacturing
of natural fiber reinforced polymer composites: Processing and prospects.
Composites Part B 2019;174: 106956.
5. Niaounakis M. Chapter 10 Building and Construction Applications. In: Niaounakis
M, editor. Biopolymers: Applications and Trends. Oxford: William Andrew
Publishing, 2015. p. 445-505.
6. Facca AG, Kortschot MT, Yan N. Predicting the tensile strength of natural finer
reinforced thermoplastics. Compos Sci Technol 2007;67(11-12):2454-2466.
7. Calamur N, Carrera M. Polypropylene. In: Cathelin C., Dorini M., Mei G., Pater J,
Rinaldi R, editors. Kirk‐Othmer Encyclopedia of Chemical Technology. John
Wiley & Sons, Inc., 2018.
8. Keskisaari A, Kärki T. The use of waste materials in wood-plastic composites and
their impact on the profitability of the product. Resour Conserv Recycl
2018;134:257-261.
9. Carus M, Eder A, Dammer L, Korte H, Scholz L, Essel R, Breitmayer E. Woodplastic composites (WPC) and natural fibre composites (NFC): European and global
Markets 2012 and future trends. WPC/NFC market study 2014;3:1-16.
10. Santosh SK, Hiremath SS. Natural fiber reinforced composites in the context of
biodegradability: A Review. In: Choudhurry I and Hashmi S, editors. Reference
Module in Material Science and Materials Engineering. Cambridge: Elsevier, 2019.
p.1-19
11. Khalil HPSA, Shahnaz SBS, Ratnam MM, Ahmad F, Fuaad NAN. Recycle
polypropylene (RPP) - wood saw dust (WSD) composites - part 1: the effect of
different filler size and filler loading on mechanical and water absorption Properties.
J Reinf Plast Compos 2006;25(12):1291-1303.
12. Zhou Y, Fan M, Chen L, Interface and bonding mechanisms of plant fibre
composites: An overview. Composites Part B 2016;101:31-45.
13. Tascioglu C, Tufan M, Yalcin M, Sen S, Determination of biological performance,
dimensional stability, mechanical and thermal properties of wood–plastic
composites produced from recycled chromated copper arsenate-treated wood. J
Thermoplast Compos Mater 2016;29(11):1461-1479.
14. Lopez-Naranjo EJ, Alzate-Gaviria LM, Hernandez-Zarate G, Reyes-Trujeque J,
Cruz-Estrada RH, Termite resistance of wood-plastic composites treated with zinc
borate and borax. J Thermoplast Compos Mater 2014;29(2):281-293.
15. Ashori A, Nourbakhsh A. Reinforced polypropylene composites: effects of
chemical compositions and particle size. Bioresour Technol 2010;101(7):2515-2519.
16. Benthien JT, Sommerhuber PF, Heldner S, Ohlmeyer M, Seppke B, Krause A,
Influence of material origin on the size distribution of wood particles for woodplastic composite (WPC) manufacture. Eur J Wood Wood Prod 2017;75(3):477-4480.
17. Verhey SA, Laks PE. Wood particle size affects the decay resistance of
woodfiber/thermoplastic composites. Forest Products Journal 2002;52(11/12):78-81.
18. Gozdecki C, Wilczynski A, Kociszewski M, Tomaszewska J, Zajchowski S,
Mechanical properties of wood–polypropylene composites with industrial wood
particles of different sizes. Wood Fiber Sci 2012;44(1):14-21.
19. Stark NM, Berger MJ. Effect of particle size on properties of wood-flour reinforced polypropylene composites. In: 4th International Conference on Wood Fiber-Plastic Composites Forest Product Society. Madison WI, 1997.
20. Zimmermann MVG, Turella TC, Santana RMC, Zattera AJ. The influence of wood
flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Mater Des 2014;57:660-666.
21. Ayre D. Technology advancing polymers and polymer composites towards sustainability: A review. Curr Opin Green Sustainable Chem 2018;13:108-112.
22. Omar MF, Jaya H, Zulkepli NN. Kenaf fiber reinforced composite in the automotive
industry. In: Choudhurry I and Hashmi S, editors. Reference Module in Materials Science and Materials Engineering. Elsevier, 2019.
23. Lau KT, Hung PY, Zhu MH, Hui D. Properties of natural fibre composites for structural engineering applications. Composites Part B 2018;136:222-33.
24. Chegdani F, Wang Z, El Mansori M, Bukkapatnam STS. Multiscale tribomechanical analysis of natural fiber composites for manufacturing applications. Tribol Int 2018;122:143-150.
25. http://www.jeccomposites.com/knowledge/international-composites-news/globalglass-fibre-production-changes-across-board., accessed date March, 30 2019.
26. Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural
fibre composites and their mechanical performance. Composites Part A 2016;83:98-112.
27. Vaisanen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and
forest industry waste and residues in natural fiber-polymer composites: A review.
Waste Manag 2016;54:62-73.
28. Bhowmick M, Mukhopadhyay S, Alagirusamy R. Mechanical properties of natural
fibre-reinforced composites. Text Prog 2012;44(2):85-140.
29. Faruk O, Bledzki AK, Fink HP, Sain M. Progress report on natural fiber reinforced composites. Macromol Mater Eng 2014;299(1):9-26.
30. Bambach MR. Geometric optimisation and compression design of natural fibre composite structural channel sections. Compos Struct 2018;185:549-560.
31. Oliveira S, Macedo JRN, Rosa DS. Eco-efficiency of poly (lactic acid)-starchcotton composite with high natural cotton fiber content: environmental and
functional value. J Cleaner Prod 2019;217:32-41.
32. Maciel NdOR, Ferreira JB, Vieira JdS, Ribeiro CGD, Lopes FPD, Margem FM, Monteiro SN, Vieira CMF, Silva LCD. Comparative tensile strength analysis between epoxy composites reinforced with curaua fiber and glass fiber. J Mater Res Technol 2018;7(4):561-565.
33. Elsabbagh A, Attia T, Ramzy A, Steuernagel L, Ziegmann G. Towards selection
chart of flame retardants for natural fibre reinforced polypropylene composites. Composites Part B 2018;141:1-8.
34. Friedrich D, Luible A. Investigations on ageing of wood-plastic composites for
outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Constr Build Mater 2016;124:1142-1152.
35. Battegazzore D, Abt T, Maspoch ML, Frache A. Multilayer cotton fabric biocomposites based on PLA and PHB copolymer for industrial load carrying applications. Composites Part B 2019;163:761-768.
36. Ahmed MJ, Balaji MAS, Saravanakumar SS, Sanjay MR, Senthamaraikannan P.
Characterization of Areva javanica fiber – A possible replacement for synthetic
acrylic fiber in the disc brake pad. J Ind Text (in press) 2018;0(0):1-24.
37. Puttegowda M, Rangappa SM, Jawaid M, Shivanna P, Basavegowda Y, Saba N.
Chapter 15 - Potential of natural/synthetic hybrid composites for aerospace
applications. In Jawaid M, Thariq M, editors. Sustainable Composites for
Aerospace Applications. Cambridge: Woodhead Publishing, 2018. p.315-351.
38. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A. A
comprehensive review of techniques for natural fibers as reinforcement in
composites: Preparation, processing and characterization. Carbohydr Polym
2019;207:108-121.
39. Ge SB, Gu HP, Ma JJ, Yang HQ, Jiang SC, Liu Z, Peng WX. Potential use of
different kinds of carbon in production of decayed wood plastic composite. Arabian
J Chem 2018;11(6):838-843.
40. Andrzejewski J, Szostak M, Barczewski M, Łuczak P. Cork-wood hybrid filler
system for polypropylene and poly(lactic acid) based injection molded composites.
Structure evaluation and mechanical performance. Composites Part B 2019;163:655-668.
41. Salazar VLP, Leão AL, Rosa DS, Gomez JGC, Alli RCP. Biodegradation of coir
and sisal applied in the automotive industry. J Polym Environ 2011;19(3):677-688.
42. Takatani M, Okamoto T. Wood/plastic composite of high filler content. Mol Cryst Liq Cryst 2008;483(1):326-38.
43. Murayama K, Ueno T, Kobori H, Kojima Y, Suzuki S, Aoki K, Ito H, Ogoe S,
Okamoto M. Mechanical properties of wood/plastic composites formed using wood
flour produced by wet ball-milling under various milling times and drying methods.
Journal of Wood Science 2019;65(5):1-10.
44. Moreno DDP, Hirayama D, Saron C. Accelerated aging of pine wood
waste/recycled LDPE composite. Polym Degrad Stab 2018;149:39-44.
45. Schwarzkopf MJ, Burnard MD. Chapter 2 - Wood-plastic composites—performance and environmental impacts. In: Kutnar A and Muthu SS, editors. Environmental Impacts of Traditional and Innovative Forest-based Bioproducts. Springer, 2016. p.19-43.
46. Bajpai P. Chapter 5 - Hardwood anatomy. In: Bajpai P, editor. Biermann's Handbook of Pulp and Paper (Third Edition). Elsevier, 2018. p.153-208.
47. Bajpai P. Chapter 4 - Softwood anatomy. In: Bajpai P, editor. Biermann's Handbook
of Pulp and Paper (Third Edition). Elsevier, 2018. p.105-152.
48. Clemons CM, Ibach RE. Effects of processing method and moisture history on
laboratory fungal resistance of wood-HDPE composites. Forest Products Journal 2004;54(4):50-57.
49. Clemons CM. Chapter 15 - Wood flour. In: Xanthos M, editor. Functional Fillers for Plastics: Second, updated and enlarged edition. Wenheim: WILEY-VCH Verlag GmbH & Co. KGaA., 2010. p.269-289.
50. Kabir MM, Wang H, Lau KT, Cardona F. Tensile properties of chemically treated
hemp fibres as reinforcement for composites. Composites Part B 2013; 53:362-368.
51. Azwa, ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des 2013;47:424-442.
52. Hietala M, Mathew AP, Oksman K. Bionanocomposites of thermoplastic starch and
cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 2013;49(4):950-956.
53. Maia THS, Larocca NM, Beatrice CAG, de Menezes AJ, de Freitas Siqueira G,
Pessan LA, Dufresne A, Franca MP, de Almeida Lucas A. Polyethylene cellulose
nanofibrils nanocomposites. Carbohydr Polym 2017;173:50-56.
54. Wang Z, Qiao X, Sun K. Rice straw cellulose nanofibrils reinforced poly(vinyl
alcohol) composite films. Carbohydr Polym 2018;197:442-450.
55. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Tsukegi T, Nishida
H. Sustainable one-pot process for the production of cellulose nanofiber and
polyethylene/cellulose nanofiber composites. J Cleaner Prod 2019;207:590-599.
56. Adekunle KF. Surface treatments of natural fibres—A Review: Part 1. Open
Journal of Polymer Chemistry 2015;05(3):41-46.
57. Gurunathan T, Mohanty S, Nayak SK. A review of the recent developments in
biocomposites based on natural fibres and their application perspectives.
Composites Part A 2015;77:1-25.
58. Popescu CM. Chapter 2 - Wood as bio-based building material. In: Jones D and
Brischke C, editors. Performance of Bio-based Building Materials. Duxford: Woodhead Publishing, 2017. p.21-96.
59. Vasile C, Darie-Niţă RN, Părpăriţă E. Chapter 10 - Performance of biomass filled
polyolefin composites. In: Misra M, Pandey JK, and Mohanty AK, editors. Biocomposites. Cambridge: Woodhead Publishing, 2015. p.257-301.
60. Biron M. Chapter 8 - Application Examples. In: Biron M, editor. Industrial Applications of Renewable Plastics. Oxford: William Andrew Publishing, 2017. p.463-518.
61. Dalu M, Temiz A, Altuntaş E, Demirel GK, Aslan M. Characterization of tanalith
E treated wood flour filled polylactic acid composites. Polym Test 2019;76:376-384.
62. Kamau-Devers K, Kortum Z, Miller SA. Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: Studies on sorption behavior, morphology, and heat conductance. Constr Build Mater 2019;214:290-302.
63. Stanzl-Tschegg SE , Navi P. Fracture behaviour of wood and its composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung 2009;63(2):139-149.
64. Hristov VN, Lach R, Grellmann W. Impact fracture behavior of modified
polypropylene/wood fiber composites. Polym Test 2004;23(5):581-589.
65. McCaffrey Z, Torres L, Flynn S, Cao T, Chiou BS, Klamczynski A, Glenn G, Orts W. Recycled polypropylene-polyethylene torrefied almond shell biocomposites. Ind Crops Prod 2018;125:425-432.
66. Cruz J, Fangueiro R. Surface modification of natural fibers: a review. Procedia Eng 2016;155:285-288.
67. Malenab RAJ, Ngo JPS, Promentilla MAB. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials (Basel) 2017;10(6):579(1-19).
68. Cruz-Ramos CA. Natural fiber reinforced thermoplastics. In: Clegg DW and Collyer AA, editors. Mechanical Properties of Reinforced Thermoplastics. Essex: Springer Netherlands, 1986. p.65-81.
69. Dinh Vu N, Thi Tran H, Duy Nguyen T. Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw. Int J Polym Sci 2018;1813847:1-10.
70. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS. Physico-chemical properties of alkali-treated acacia leucophloea fibers. Int J Polym Anal Charact 2015;20(8):704-713.
71. Liu Y, Ma Y, Yu J, Zhuang J, Wu S, Tong J. Development and characterization of alkali treated abaca fiber reinforced friction composites. Compos Interfaces 2019;26(1):67-82.
72. Saravanakumar SS, Kumaravel A, Nagarajan T, Moorthy IG. Investigation of physico-chemical properties of alkali-treated prosopis juliflora fibers. Int J Polym Anal Charact 2014;19(4):309-317.
73. Koohestani B, Ganetri I, Yilmaz E. Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Composites Part B 2017;111:103-111.
74. Yeh SK, Hsieh CC, Chang HC, Yen CCC, Chang YC, Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of
polypropylene–rice husk composites and their foam. Composites Part A 2015;68:313-322.
75. Zegaoui A, Ma R, Dayo AQ, Derradji M, Wang J, Liu W, Xu Y, Cai W.A. Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers. Chin J Chem Eng 2018;26(5):1219-1228.
76. Malakani M, Bazyar B, Talaiepour M, Hemmasi AH, Ghasemi I. Effect of acetylation of wood flour and mapp content during compounding on physical properties, decay resistance, contact angle, and morphology of polypropylene/wood flour composites. Bioresources 2015;10(2):2113-2129.
77. Cavdar AD, Mengeloglu F, Karakus K, Tomak ED. Effect of chemical modification with maleic, propionic, and succinic anhydrides on some properties of wood flour filled hdpe composites. Bioresources 2014;9(4):6490-6503.
78. Tolinski M. Chapter 14 - Coupling and compatibilizing. In: Tolinski M, editor. Additives for Polyolefins 2nd ed. Oxford: William Andrew Publishing, 2015. p.153-158.
79. Catto AL, Montagna L., Almeida SH, Silveira RMB, Santana RMC. Wood plastic composites weathering: effects of compatibilization on biodegradation in soil and fungal decay. In. Biodeterior Biodegrad 2016;109:11-22.
80. Altuntas E, Yilmaz E, Salan T, Alma MH. Combined effect of zinc borate and coupling agent against brown and white rot fungi in wood-plastic composites. Bioresources 2017;12(4):7056-7068.
81. Zhang ZX, Gao C, Xin ZX, Kim JK. Effects of extruder parameters and silica on physico-mechanical and foaming properties of PP/wood-fiber composites. Composites Part B 2012;43(4):2047-2057.
82. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S. Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crops Prod 2018;111:878-888.
83. Quiles-Carrillo L, Montanes N, Garcia-Garcia D, Carbonell-Verdu A, Balart R, Torres-Giner S. Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B 2018;147:76-85.
84. Dwivedi UK, Chand N. Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. J Mater Process Technol 2009;209(12-13):5371-5375.
85. Spear MJ, Eder A, Carus M. Chapter 10 - Wood polymer composites. In: Ansell MP, editor. Wood Composites. Duxford: Woodhead Publishing, 2015. p.195-249.
86. Liminana P, Garcia-Sanoguera D, Quiles-Carrillo L, Balart R, Montanes N. Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B 2018;144:153-162.
87. La Mantia FP, Morreale M. Green composites: A brief review. Compos Part a-Appl S 2011;42(6):579-588.
88. Bledzki AK, Letman M, Viksne A, Rence L. A comparison of compounding processes and wood type for wood fibre—PP composites. Composites Part A 2005. 36(6): p. 789-797.
89. Rosato DV, Rosato DV, Rosato MV. Chapter 5 – Extrusion. In: Rosato DV, Rosato DV, and Rosato MV, editors. Plastic Product Material and Process Selection Handbook. Oxford: Elsevier, 2004, Elsevier: Oxford. p.227-281.
90. Drobny JG. Chapter 7 - Processing of fluoroelastomers. In: Drobny JG, editor. Fluoroelastomers Handbook (Second Edition). Oxford: William Andrew Publishing, 2016. p.107-130.
91. Pappu A, Pickering KL, Thakur VK. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind Crops Prod 2019;137:260-269.
92. Elsabbagh A, Ramzy A, Steuernagel L, Ziegmann G. Models of flow behaviour and fibre distribution of injected moulded polypropylene reinforced with natural fibre composites. Composites Part B 2019;162:198-205.
93. Schäfer H, Pretschuh C, Brüggemann O. Reduction of cycle times in injection molding of PLA through bio-based nucleating agents. Eur Polym J 2019;115:6-11.
94. Yang Y, Chen X, Lu N, Gao F. Chapter 1 - Injection molding: Background. In: Hamilton C, editor. Injection Molding: Process Control, Monitoring, and Optimization. Munich: Carl Hanser Verlag, 2016. p.1-37.
95. https://www.instron.us/enus/testing-solutions/by-standard/astm/multiple-testingsolutions/astm-d638, accessed date June, 25 2019.
96. Ratanawilai T, Taneerat K. Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering. Constr Build Mater 2018;172:349-357.
97. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J Cleaner Prod 2018;172:566-581.
98. Karakus K, Birbilen Y, Mengeloğlu F. Assessment of selected properties of LDPE composites reinforced with sugar beet pulp. Measurement 2016;88:137-146.
99. Sommerhuber PF, Wang T, Krause A. Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. J Cleaner Prod 2016;121:176-185.
100. https://www.epa.gov/ingredients-used-pesticide-products/overview-woodpreservative-chemicals, accessed on March, 1 2019.
101. Friedrich D. Comparative study on artificial and natural weathering of woodpolymer compounds: A comprehensive literature review. Case Stud Constr Mater 2018;9:1-12.
102. Badji C, Beigbeder J, Garay H, Bergeret A, Benezet JC, Desauziers V. Natural weathering of hemp fibers reinforced polypropylene biocomposites: Relationships between visual and surface aspects, mechanical properties and microstructure based on statistical approach. Compos Sci Technol 2018;167:440-447.
103. Klyosov AA. Chapter 12 - Water Absorption by composite materials and related effects. In: Klyosov AA. Wood Plastic Composites, 2007. New Jersey: John Wiley & Sons, Inc. p. 383-411.
104. Balatinecz JJ, Park BD. The effects of temperature and moisture exposure on the properties of wood-fiber thermoplastic composites. J Thermoplast Compos Mater 1997;10(5):476-487.
105. Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Compos Sci Technol 2002;62(10):1357-1372.
106. Fortini A, Mazzanti V. Combined effect of water uptake and temperature on wood polymer composites. J Appl Polym Sci 2018;135(35):46674 (1 of 9).
107. Leu SY, Yang TH, Lo SF, Yang TH. Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Constr Build Mater 2012;29:120-127.
108. Koohestani B, Khodadadi Darban A, Yilmaz E, Mokhtari P, Ganetri I. Influence of amine and vinyl functional groups of silanes on total performance of thermoplasticbased composites. Constr Build Mater 2018;172:98-105.
109. Moudood A, Rahman A, Öchsner A, Islam M, Francucci G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J Reinf Plast Compos 2018;0(0):1-17.
110. Turku I, Karki T, Puurtinen A. Durability of wood plastic composites manufactured from recycled plastic. Heliyon, 2018;4(3):1-20.
111. Turku I, Kärki T. Accelerated weathering of wood–polypropylene composite containing carbon fillers. J Compos Mater 2016;50(10):1387-1393.
112. Gozdecki C, Wilczynski A, Kociszewski M. Effect of high temperature on the mechanical properties of wood-polymer composites. Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology 2013;82:291-294.
113. Bari E, Oladi R, Schmidt O, Clausen CA, Ohno K, Nicholas DD, Daryaei MG, Karim M. Influence of xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor. Int Biodeterior Biodegrad 2015;104:299-306.
114. http://johnbward.com/wood-decay-fungi, accessed date June, 30 2019.
115. Ladislav R, Fungicides for wood protection. In: World Viewpoint and Evaluation/Testing. Slovakia, 2010.
116. Tascioglu C, Umemura K, Yoshimura T, Tsunoda K. Biological performance of zinc borate-incorporated particleboard: Effects of leaching on efficacy. Composites Part B 2014;57:31-34.
117. Altuntas E, Yilmaz E, Salan T, Alma MH. Biodegradation properties of woodplastic composites containing high content of lignocellulosic filler and zinc borate exposed to two different brown-rot fungi. BioResources 2017;12(4):7161-7177.
118. ASTM D638-14. Standard Test Method for Tensile Properties of Plastics, 2014.
119. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B. Wood plastic composites prepared from biodegradable poly(butylene succinate) and burma padauk sawdust (Pterocarpus macrocarpus): Water absorption kinetics and sunlight exposure investigations. J Bionic Eng 2017;14(4):781-790.
120. Yeh SK, Gupta RK, Improved wood–plastic composites through better processing.
Composites Part A 2008;39(11):1694-1699.
121. Zhou Y, Fan M, Lin L. Investigation of bulk and in situ mechanical properties of coupling agents treated wood plastic composites. Polym Test 2017;58:292-299.
122. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites Part A 2007;38(6):1473-1482.
123. Yerlesen U, Tasdemir M. Effect of zinc oxide and zinc borate on mechanical properties of high density polyethylene. Rev Rom Mater 2015;45(4):364-369.
124. Asgari M, Masoomi M. Thermal and impact study of PP/PET fibre composites compatibilized with glycidyl methacrylate and maleic anhydride. Composites Part B 2012;43(3):1164-1170.
125. Badritala A, Hosseini Hashemi SK, Kord B, Zabihzadeh SM, Safdari V. Morphology and mechanical properties of zinc borate-pretreated poplar wood flour/plastic composite. BioResources 2013;8(1):913-922.
126. Chaudemanche S, Perrot A, Pimbert S, Lecompte T, Faure F. Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Constr Build Mater 2018;162:543-552.
127. Yeh SK, Kim KJ, Gupta RK. Synergistic effect of coupling agents on polypropylene-based wood-plastic composites. J Appl Polym Sci 2013;127(2):1047-1053.
128. Kaboorani A. Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design. Constr Build Mater 2017;136:164-172.
129. Mrad H, Alix S, Migneault S, Koubaa A, Perré P. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement 2018;115:197-203.
130. Siau JF. Basic wood-moisture relationships. In: Timell TE, editor. Transport Processes in Wood. Heidelberg: Springer Verlag, 1984. p.1-34.
131. Turku I, Kärki T. Accelerated weathering of fire-retarded wood–polypropylene composites. Composites Part A 2016;81:305-312.
132. Banerjee S, Yang R, Courchene CE, Conners TE. Scanning electron microscopy measurements of the surface roughness of paper. Ind Eng Chem Res 2009;48(9):4322-4325.
133. Xu K, Feng J, Zhong T, Zheng Z, Chen T. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. Int Biodeterior Biodegrad 2015;100:106-115.
134. Tascioglu C, Yoshimura T, Tsunoda K. Biological performance of wood–plastic composites containing zinc borate: Laboratory and 3-year field test results. Composites Part B 2013;51:185-190.
135. Tascioglu C, Umemura K, Yoshimura T. Seventh-year durability evaluation of zinc borate incorporated wood-plastic composites and particleboard. Composites Part B 2018;137:123-128.
136. Yamaguchi H. Silicic acid: boric acid complexes as wood preservatives. Wood Sci Technol 2003;37(3):287-297.
137. Dowdy S, Weardon S, Chilko D. Chapter 1 – The role of statistics. In: Balding DJ, Cressie NAC, Fisher NI, Johnstone IM, Kadane JB, Ryan LM, Scott DW, Smith AFM, and Teugels JL, editors. Statistics for Research, 3rd ed. Wiley Series in Probability and Statistics. Hoboken: John Wiley & Sons, Inc., 2004. p.1-22

無法下載圖示 全文公開日期 2024/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE